BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH
KHOA HÓA

PHẠM THỊ THÚY

PHA CHẾ DUNG DỊCH DỊNH DƯỠNG ÆÊ
TRỌNG RAU SẠCH BẰNG PHƯƠNG PHÁP
THỦY CANH TĨNH

KHÓA LUẬN TỔT NGHIỆP

Người hướng dẫn: Lê Văn Đảng

Thành phố Hồ Chí Minh 2013
LỞI CẢM ON

Để hoàn thành khóa luận tốt nghiệp này, ngoài sự cố gắng của bản thân, tôi đã nhận được sự giúp đỡ rất lớn từ phía các thầy cô giáo, gia đình, bạn bè và các thành viên trên diễn đàn Rau Sạch.

Trước hết tôi xin gửi lời tri ân sâu sắc nhất đến ThS. Lê Văn Đăng, thầy đã tận tình dặn dặm, giúp đỡ và tạo động lực để tôi hoàn thành bài khóa luận tốt nghiệp này.

Tôi xin chân thành cảm ơn các thầy cô tổ Hóa phân tích, Hóa hữu cơ đã giúp đỡ và đưa ra những lời khuyên hữu ích trong suốt quá trình tôi thực hiện đề tài.

Tôi cũng chân thành gửi lời cảm ơn tới các thành viên của diễn đàn Rau Sạch đã giúp tôi thực hiện cuộc khảo sát thực tế và cho tôi những kinh nghiệm hữu ích để tôi có thể hoàn thành đề tài.

Bên cạnh đó, tôi xin cảm ơn sự hỗ trợ nhiệt tình của bản Đặng Thị Kim Dung – sinh viên lớp Hóa 4A khóa 35. Bạn đã cùng tôi chọn đề tài và vượt qua những khó khăn để tôi có thể hoàn thành nó một cách tốt nhất.

Tôi cũng muốn gửi lời cảm ơn tới anh trai, người đã hỗ trợ và động viên tôi rất nhiều trong quá trình thực nghiệm đề tài.

Tôi xin chân thành cảm ơn các bạn, các anh chị đều chi mới quen biết nhưng đã nhiệt tình chia sẻ cho tôi những tài liệu tham khảo hữu ích. Chúng đã hỗ trợ tôi rất nhiều trong quá trình thực hiện khóa luận.

Cuối cùng, tôi hết lòng tri ân sự dâng dỗ, quan tâm của thầy cô và gia đình trong suốt thời gian qua.

Xin chân thành cảm ơn!
MỤC LỤC

DANH MỤC CÁC KÍ HIỆU, CHỦ VIỆT TẤT ... 1
DANH MỤC CÁC BẢNG.. 2
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ... 4
PHẦN I. MỞ ĐẦU... 1
PHẦN II. NỘI DUNG VÀ KẾT QUẢ NGHIỆN CỨU ... 4
CHƯƠNG 1. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN CỦA ĐỀ TÀI NGHIỆN CỨU 4

1.1. Sơ lược lịch sử vấn đề nghiên cứu: ... 4
1.1.1. Ngoài nước: .. 4
1.1.2. Trong nước: .. 5
1.2. Phương pháp thủy canh: ... 6
1.2.1. Khái niệm thủy canh ... 6
1.2.2. Ưu, nhược điểm của phương điểm thủy canh... 6
1.2.3. Các loại hình thủy canh. .. 8
1.3. Dinh dưỡng trong thủy canh .. 10
1.3.1. Nhu cầu – nhiệm vụ của các nguyên tố dinh dưỡng.................................... 11
1.3.2. Dung dịch dinh dưỡng ... 21
1.4. Ảnh hưởng của môi trường bên ngoài đến sự hút chất dinh dưỡng của rễ và biến dưỡng ở hệ rễ ... 25
1.4.1. Ảnh hưởng của nồng độ CO₂ .. 25
1.4.2. Ảnh hưởng của độ thoáng khí đến sự hút chất dinh dưỡng.......................... 26
1.4.3. Ảnh hưởng của sự ngập ướp đối với hệ rễ ... 26
1.4.4. Ảnh hưởng của nhiệt độ đến sự hút khoáng ... 27
1.4.5. Ảnh hưởng của ánh sáng đến sự hút khoáng ... 28
1.4.6. Ảnh hưởng của nồng độ và tỷ lệ các nguyên tố khoáng ở môi trường ngoài đến sự hút khoáng ... 28
1.4.7. Ảnh hưởng của nấm bệnh trong dụng dịch thủy canh................................... 28
1.4.8. Ảnh hưởng của các gia thể nuôi trồng thủy canh 29
1.4.9. Ảnh hưởng của chất lượng nguồn nước ... 32
1.5. Phương pháp thủy canh tĩnh (thủy canh không hồi lưu) 32
1.5.1. Khái niệm .. 32
1.5.2. Ưu, nhược điểm .. 32
1.5.3. Vật liệu, dụng cụ .. 33
1.6. Tính toán dinh dưỡng trong kỹ thuật thủy canh: 33
1.7. Giới thiệu về một số loại rau ăn lá và rau ăn quả 39
 1.7.1. Cải xanh ... 39
 1.7.2. Cải ngọt ... 40
 1.7.3. Cải thia ... 40
 1.7.4. Xà lách ... 40
 1.7.5. Rau đền ... 41
 1.7.6. Rau muống .. 41
 1.7.7. Húng quế .. 41
 1.7.8. Mồng tơi ... 42
 1.7.9. Dưa leo ... 42
1.8. Thực trạng việc áp dụng mô hình thủy canh tại hộ gia đình 42

CHƯƠNG 2. GIỚI THIỆU PHẦN MỀM HYDROBUDDY V1.50 VÀ ỨNG DỤNG TRONG PHA CHẾ DUNG DỊCH THỦY CANH. 46
 2.1. Giới thiệu phần mềm hydrobuddy v1.50 46
 2.2. Hướng dẫn sử dụng phần mềm Hydrobuddy v1.50 47
 2.2.1. Cài đặt phần mềm .. 47
 2.2.2. Hướng dẫn sử dụng phần mềm 48
 2.2.3. Sử dụng phần mềm để tính lượng hóa chất cần dùng pha chế: 53
 2.3. Hướng dẫn pha chế dung dịch dinh dưỡng: 56
 2.3.1. Chuẩn bị hóa chất và dụng cụ 56
 2.3.2. Pha chế dung dịch dinh dưỡng 57

CHƯƠNG 3. QUY TRÌNH TRỒNG RĀU SẠCH BẰNG PHƯƠNG PHÁP THỦY CANH TỈNH QUY MÔ HỘ GIA ĐÌNH 58
 3.1. Chuẩn bị bố dụng cụ thủy canh................................. 58
 3.1.1. Vật liệu, dụng cụ .. 58
 3.1.2. Chuẩn bị dung dịch dinh dưỡng 59
 3.1.3. Một số thiết bị hỗ trợ: ... 59
 3.2. Chuẩn bị cây con ... 59
 3.3. Pha dung dịch dinh dưỡng từ dung dịch cốt 60
3.4. Chăm sóc và bổ sung dung dịch dinh dưỡng ..60
3.5. Thu hoạch ..60

CHƯƠNG 4. THỰC NGHIỆM TRONG THỦY CANH TỊNH61
4.1. Mục đích thực nghiệm ..61
4.2. Nội dung thực nghiệm ..61
4.3. Đối tượng thực nghiệm ..61
4.4. Tiến hành thực nghiệm ..61
 4.4.1. Chuẩn bị vật liệu và dụng cụ: ...61
 4.4.2. Uốn cây con ..63
 4.4.3. Pha chế dung dịch dinh dưỡng gốc ..63
 4.4.4. Tiến hành trồng thủy canh ...70
 4.4.5. Phân tích kết quả thực nghiệm ...72

CHƯƠNG 5. KẾT QUẢ VÀ THẢO LUẬN ..73
5.1. Thực nghiệm phương pháp thủy canh tĩnh sử dụng dung dịch dinh dưỡng được pha chế theo công thức rau ăn lá của Howard Resh và Douglas Peckenpaugh 73
5.2. Thực nghiệm phương pháp thủy canh tĩnh sử dụng dung dịch dinh dưỡng được pha chế theo công thức Dưa leo củ của Howard Resh (công thức 3).............78
5.3. Kiểm định chất lượng màu rau trồng thực nghiệm79

PHẦN III: KẾT LUẬN – ĐỀ XUẤT ...81
TÀI LIỆU THAM KHẢO ...83
PHỤ LỤC ...1
DANH MỤC CÁC KÍ HIỆU, CHỮ VIỆT TẤT

Ct : Công thức

CTPT : Công thức phân tử.

Dd : Dung dịch

DO : Dissoved oxigen

DP : Douglas Peckenpaugh

EC : Electro-conductivity

HR : Howard Resh

KTS : Kỹ thuật số

Ppm : Parts per million

TCVN : Tiêu chuẩn Việt Nam

TDS : Total dissolved salt
DANH MỤC CÁC BẢNG

Bảng 1.1. So sánh giữa trông cây theo phương pháp thô canh và phương pháp thủy canh...7

Bảng 1.2. Bảng tóm tắt triệu chứng tiêu hao và nhiễm độc của một số nguyên tố khoảng trên cây cà chua ..18

Bảng 1.3. Một số giới hạn EC và TDS đối với một số loại cây trồng..................24

Bảng 1.4. Danh mục các nguyên tố thường sử dụng trong thủy canh và khối lượng nguyên tử của chúng ..33

Bảng 1.5. Giới hạn nồng độ một số chất trong phân bón35

Bảng 1.6. Quy định nồng độ vi lượng trong dung dịch dinh dưỡng37

Bảng 1.7. Lượng muối các nguyên tố vi lượng để pha 1 lít dung dịch cốt38

Bảng 1.8. Một số muối da lượng được dùng trong thủy canh38

Bảng 4.1. Công thức rau ăn lá của Howard Resh ...63

Bảng 4.2. Thành phần hóa chất dùng để pha chế dung dịch dinh dưỡng theo công thức rau ăn lá của Howard Resh ...64

Bảng 4.3. Công thức rau ăn lá nhiệt đới của Douglas Peckenpaugh65

Bảng 4.4. Thành phần hóa chất dùng để pha chế dung dịch dinh dưỡng theo công thức rau ăn lá nhiệt đới của Douglas Peckenpaugh66

Bảng 4.5. Công thức dừa leo của Howard Resh ...67

Bảng 4.6. Thành phần hóa chất dùng để pha chế dung dịch dinh dưỡng theo công thức dừa leo của Howard Resh ..68

Bảng 5.1. Số lá trưởng bình và năng suất của xà lách được trồng theo 2 công thức ..73

Bảng 5.2. Số lá trưởng bình và năng suất của cải thia được trồng theo 2 công thức ..73

Bảng 5.3. Số lá trưởng bình và năng suất của cải ngọt được trồng theo 2 công thức ..74

Bảng 5.4. Số lá trưởng bình và năng suất của cải xanh được trồng theo 2 công thức ..74

Bảng 5.5. Chiều cao trưởng bình (cm) và năng suất của rau muống được trồng theo 2 công thức ...75

Bảng 5.6. Chiều cao trưởng bình (cm) và năng suất của rau dền được trồng theo 2 công thức ..76
Bảng 5.7. Chiều cao trung bình (cm) và năng suất của húng quế được trồng theo 2 công thức.. 76

Bảng 5.8. Häßig lượng nitrat (NO₃⁻) và một số kim loại trong rau cải thia.......79

Bảng 5.9. H.twig nature nitrat, một số kim loại và lượng vi sinh vật gây hại trong mẫu dưa leo... 80
DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ

Hình 1.1. Mô hình thủy canh không hồi lưu

Hình 1.2. Hệ thống thủy canh hồi lưu

Hình 1.3. Cây trong hệ thống thủy canh hồi lưu

Hình 1.4. Hệ thống khí canh

Hình 1.5. Biểu đồ về tần phổ biến của mô hình thủy canh tĩnh

Hình 1.6. Biểu đồ về phương pháp chuẩn bị dung dịch dinh dưỡng

Hình 4.1. Bộ thùng xốp để trồng thủy canh tĩnh

Hình 4.2. Đức lù ly nhựa

Hình 5.1. Rau muống trồng theo ct HR (bên trái) và rau muống trồng theo ct DP (bên phải) sau 12 ngày

Hình 5.2. Rau húng quế trồng theo ct HR (bên trái) và rau húng quế trồng theo ct DP (bên phải) sau 26 ngày

Hình 5.3. Rau mồng tơi trồng theo ct HR (bên trái) và mồng tơi trồng theo ct DP (bên phải) sau 7 ngày

Hình 5.4. Biểu hiện thiêú kali của dưa leo trồng theo công thức ban đầu

Hình 5.5. Dưa leo phát triển tốt sau khi điều chỉnh công thức
PHẦN I. MỞ ĐẦU

1. Lý do chọn đề tài:

Rau xanh là loại thực phẩm không thể thiếu trong bữa ăn hàng ngày của mọi gia đình từ nông thôn cho đến thành thị. Tuy lượng protein và lipid trong rau không đáng kể, nhưng chúng cung cấp cho cơ thể nhiều muối khoáng có tính kiềm, các vitamin, axit hữu cơ, chất xơ…có vai trò vô cùng quan trọng đối với sự phát triển của cơ thể con người.

Nhu cầu về rau xanh trên thị trường ngày càng tăng cao, người nông dân không ngại ngần sử dụng các chất kích thích tăng trưởng, chất bảo vệ thực vật (thuốc trừ sâu, diệt cỏ, ký sinh trùng…) với mong muốn nâng cao năng suất, đem lại hiệu quả kinh tế cao.

Một bộ phận người dân tự trồng rau sạch cung cấp cho bữa ăn hàng ngày của gia đình lâm rỡ lên phong trào trồng rau sạch tại nhà xuất trong vài năm gần đây và dần trở nên phổ biến hơn khi các thông tin đáng tin cậy về vệ sinh và an toàn thực phẩm ngày càng nhiều. Không chỉ phục vụ bữa ăn sạch cho gia đình, trồng rau tại nhà còn là một thú vui lành mạnh với nhiều lợi ích cho sức khỏe của gia đình bạn và góp phần bảo vệ môi trường. Một trong những kĩ thuật trồng rau sạch được nhiều người thành thị quan tâm hiện nay là phương pháp thủy canh. Có nhiều phương pháp thủy canh nhưng thủy canh tĩnh là phương pháp đơn giản, kinh tế và phù hợp với quy mô hộ gia đình. Đây là phương pháp dễ thực hiện chỉ cần một số kiến thức căn bản ban đầu không cần sử dụng đất, tần dụng được những khoảng không gian nhỏ như ban công, sân thượng với một số dụng cụ đơn giản và các hóa chất cần thiết nhưng đem lại năng suất cao, chất lượng rau an toàn, tiết kiệm sức lao động.

Diểm mạnh quyết định thành công của phương pháp thủy canh là pha chế được một dung dịch dinh dưỡng phù hợp với loại cây trồng. Vấn đề này đòi hỏi người thực hiện phải có 1 số kiến thức khoa học nhất định nên đã phần người dân lựa chọn giải pháp mua các dung dịch dinh dưỡng có sẵn trên thị trường. Các dung dịch này thường được sử dụng chung cho nhiều loại cây trồng nên chưa đem lại hiệu quả cao đối với nhiều loại rau, bền cạnh do giá thành còn khá cao.
Nhằm phổ biến kỹ thuật trồng rau sạch bằng phương pháp thủy canh tinh đặc biệt là cách tự pha chế dụng dịch đỉnh dưỡng phù hợp với 1 số loại cây trồng cụ thể đến các hộ gia đình có nhu cầu sản xuất rau sạch chúng tôi quyết định chọn đề tài “Pha chế dụng dịch đỉnh dưỡng để trồng rau sạch bằng phương pháp thủy canh tịnh”

2. Mục đích của việc nghiên cứu:
 - Pha chế dụng dịch thủy canh phù hợp với một số loại rau củ thế để trồng rau sạch bằng phương pháp thủy canh tịnh.
 - Tạo các video clip hướng dẫn pha chế dụng dịch thủy canh và hướng dẫn trồng một số loại rau bằng phương pháp thủy canh tịnh.

3. Nhiệm vụ của đề tài:
 - Nghiên cứu tổng quan và cơ sở lý thuyết của phương pháp thủy canh.
 - Nghiên cứu tổng quan về nhu cầu đỉnh dưỡng của cây trồng.
 - Nghiên cứu về nội dung, phương pháp thực hiện loại hình thủy canh tịnh.
 - Nghiên cứu thực trạng trồng rau bằng phương pháp thủy canh ở quy mô hộ gia đình.
 - Nghiên cứu và ứng dụng phần mềm Hidrobuddy v1.50 để pha chế dụng dịch thủy canh.
 - Nghiên cứu và sử dụng phần mềm Ulead studio 11 để làm các video clip hướng dẫn.
 - Thực nghiệm để đánh giá kết quả của đề tài nghiên cứu.

4. Khách thể và đối tượng nghiên cứu:
 - Khách thể nghiên cứu: phương pháp thủy canh để sản xuất rau sạch.
 - Đối tượng nghiên cứu: việc pha chế dùng dịch trồng rau sạch bằng phương pháp thủy canh tịnh.

5. Phạm vi nghiên cứu:
 - Pha chế dụng dịch trồng rau sạch bằng phương pháp thủy canh tịnh ở quy mô hộ gia đình.
6. Giải thuyết khoa học:

- Nếu đưa ra được công thức pha chế đúng dịch thủy canh phù hợp với 1 số loại cây trồng cụ thể ở Việt Nam sẽ nâng cao năng suất, chất lượng rau sạch, thực phẩm pha chế từ sản xuất rau sạch, tạo tiền đề mở rộng phát triển sản xuất với quy mô công nghiệp.

7. Phương pháp và phương tiện nghiên cứu

- Phương pháp nghiên cứu:
 - Đọc và nghiên cứu các tài liệu có liên quan đến đề tài.
 - Truy cập các diễn đàn để học tập kinh nghiệm trồng rau sạch.
 - Sử dụng phần mềm HydroBuddy v1.50 để tính toán pha chế đúng dịch trong thủy canh.
 - Thực nghiệm khoa học.
 - Quan sát, ghi nhận kết quả.
 - Xử lý kết quả thực nghiệm, phân tích, tổng hợp.
 - Thảo luận, rút kinh nghiệm với giáo viên hướng dẫn, bạn bè.

- Phương tiện nghiên cứu:
 - Máy chụp hình KTS Sony.
 - Máy vi tính.
 - Hóa chất, dụng cụ thí nghiệm, bộ dụng cụ trồng thủy canh, hạt giống.
 - Phần mềm HydroBuddy v1.50, phần mềm Ulead VideoStudio 11.

8. Đồng góp mới của đề tài

- Hướng dẫn sử dụng phần mềm Hydrobuddy v1.50 nhằm giúp cho những người trồng thủy canh chủ động pha chế đúng dịch đúng đường theo nhu cầu.

- Thực nghiệm và rút ra hiểu quả công thức rau ăn lá chung của Howard Resh, công thức rau ăn lá nhiệt đới của Douglas Peckenpaugh và công thức trồng dưa leo của Howard Resh trên một số loại rau phổ biến ở nước ta.
PHẦN II. NỘI DUNG VÀ KẾT QUẢ NGHIỆN CỨU

CHƯƠNG 1. CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN CỦA ĐỀ TÀI NGHIỆN CỨU

1.1. Sơ lược lịch sử vấn đề nghiên cứu:

1.1.1. Ngoại nước:
- Kỹ thuật thủy canh đã có từ lâu. Nhưng khoa học hiện đại về thủy canh thực tế đã xuất hiện vào khoảng năm 1936 khi những thử nghiệm của tiến sĩ W.E.Gericke ở trường đại học California được công bố. Ông đã trở thành công nương sở loài cây trong nước trong đó có cây cà chua trong 12 tháng có chiều cao 7,5 m Gericke công bố khả năng thương mại của ngành thủy canh và đặt tên cho nó là “hydroponics” trong tiếng Hy Lạp là nước và “ponos” có nghĩa là lao động. Vi vậy thủy canh hiệu theo nghĩa đen là làm việc với nước.
- Sự nghiên cứu trong những niên đại gần đây nhất cho thấy vườn treo Babilon và vườn nổi Kashmir và tại Aztec Indians của Mexico cũng còn những nơi trồng cây trên bè trong những hồ can.
- Năm 1699, nhà khoa học Anh John Woodward đã thí nghiệm trồng cây trong nước có chứa các loại đất khác nhau và kết luận rằng: “Chính các chất hòa tan trong đất đã thúc đẩy sự phát triển của thực vật chứ không phải là đất”.
- Nhiều thập kỷ sau đó các nhà khoa học đã phân tích thành phần cơ bản của thực vật và khả năng hấp thụ chất dinh dưỡng cho sự phát triển của cây bằng thử nghiệm. Năm 1938, nhà dinh dưỡng thực vật Dennis R.Hoagland đã đưa ra công thức dinh dưỡng thủy canh mà ngày nay vẫn còn được sử dụng.
- Những năm 30 của thế kỷ XX, W.E.Gericke đã phổ biến rộng rãi phương pháp thủy canh ở nước Mỹ. Tuy nhiên, những ứng dụng trên quy mô lớn chỉ do cộng đất ít, cho đến năm 1944 khi Mỹ sử dụng phương pháp thủy canh trồng rau cung cấp cho quân đội ở vùng xa Đại Tây Dương và các nơi khác đã chứng minh: mỗi vụ trồng ¼ ha rau xà lách có thể cung cấp cho 400 người sử dụng.
- Kỹ thuật thủy canh ban đầu dùng những bè có diện tích tối 11 m², với diện tích như vậy hàng tuần người ta có thể thu hoạch được: 15 kg cà chua, 20 kg rau diệp, 9 kg đậu, 20 kg ngô ngọt. Một đủ án về kỹ thuật thủy canh lón nhất thể
giới với diện tích 22 ha ở đảo Chofu Nhật Bản được thực hiện trong một diện tích nhà kính 21370 m² có 87 đường dài 91 m và rộng 1,25 m với mỗi trường trong là cát vàng.

- Nhật Bản đẩy mạnh kỹ thuật thủy canh để sản xuất rau sạch. An toàn thực phẩm là một trong những vấn đề mà người Nhật rất quan tâm, họ luôn lo nghĩ và thăm trọng đối với những phụ gia thực phẩm hay thuốc trừ sâu nông nghiệp. Họ nuôi, do diện tích canh tác hạn hẹp nên chính phủ Nhật đặc biệt khuyến khích phát triển phương pháp nông nghiệp thủy canh.

1.1.2. Trong nước:

- Việc nuôi trồng thủy canh được biết khá lâu, nhưng chưa được nghiên cứu có hệ thống và được sử dụng để trồng các loại cây canh cảnh nhiều hơn.
- Từ năm 1993, GS.Lê Đình Lương – khoa Sinh học ĐHQG Hà Nội phối hợp với viên nghiên cứu và phát triển Hồng Kông (R&D Hong Kong) đã tiến hành nghiên cứu toàn diện các khía cạnh khoa học kỹ thuật và kinh tế xã hội cho việc chuyển giao công nghệ và phát triển thủy canh tại Việt Nam.
- Đến tháng 10 năm 1995 mang luoi nghiên cứu và triển khai mô hình thủy canh được phát triển ở Hà Nội, TP.Hồ Chí Minh, Côn Đảo, Sở khoa học công nghệ và môi trường ở một số tỉnh thành. Công ty Golden Garden & Gino, nhóm sinh viên Đại học Khoa học Tự nhiên Thành phố Hồ Chí Minh đã ứng dụng thành công phương pháp thủy canh với vài loại rau thông dụng, cai xanh, cai ngọt, xà lách…
- Phân viễn công nghệ sau thu hoạch, Viện Sinh học nhiệt đới cũng đã có những nghiên cứu và sản xuất theo phương pháp thủy canh. Nội dung chủ yếu là:
 + Thiết kế và phối hợp sản xuất các nguyên liệu đúng cho thủy canh.
 + Nghiên cứu trồng các loại cây khác nhau, cây truyền từ nuôi cây mô vào hệ thủy canh trước khi đưa vào đất một số cây ăn quả khó trồng trực tiếp vào đất.
 + Triển khai thủy canh ở quy mô gia đình, thành thị và nông thôn. Kết hợp thủy canh với dự án rau sạch của thành phố.

1.2. Phương pháp thủy canh:

1.2.1. Khái niệm thủy canh

- Theo PGS.TSKH. Nguyễn Xuân Nguyên [7], Thủy canh (Hydroponics) là hình thức canh tảo trồng cây trong dung dịch, là kỹ thuật trồng cây không dùng đất. Cây trồng được trồng trên hoặc trong dung dịch dinh dưỡng cũng với các loại giá thể, sử dụng dinh dưỡng hòa tan trong nước dưới dạng dung dịch. Tùy theo từng kỹ thuật mà toàn bộ hoặc một phần bộ rễ cây được ngâm trong dung dịch dinh dưỡng.
- Kỹ thuật thủy canh là một trong những kỹ thuật tiên bộ của nghệ làm vườn hiện đại. Trong đó, sử dụng những chất dinh dưỡng thích hợp, căn thiết cho sự sinh trưởng và phát triển của cây trồng tránh được sự phát triển của có hại, còn tròn và bệnh tật gây nhiễm từ đất.

1.2.2. Ưu, nhược điểm của phương pháp thủy canh.

1.2.2.1. Ưu điểm:

- Không cần đất, chỉ cần không gian để đặt những dụng cụ trồng thủy canh, do vậy có thể triển khai ở những vùng đất cần cỏ như hai dào, vùng núi xa xôi, cũng như tại các hộ gia đình trên sân thượng, ban công.
- Không phải làm đất, không có cơ dại và các vi sinh vật gây hại, mất bệnh có trong đất.
- Giảm thiểu được tình trạng khan hiểm rau, giảm giảm thành vi có thể trồng được nhiều vụ, trồng trải vụ với năng suất cao hơn phương pháp thổ canh.
- Không cầnưới nước thường xuyên.
- Không cần sử dụng thuốc trừ sâu và các hóa chất độc hại khác.
- Năng suất cao, sản phẩm hoàn toàn sạch, động không, giàu dinh dưỡng và tươi ngon.
- Không tích lũy chất độc, không gây ô nhiễm môi trường.
- Không đòi hỏi lao động nằng nặc, người già, trẻ em đều có thể tham gia, là một hình giải trí sau những giờ làm việc trí óc căng thẳng.

1.2.2.2. Nhược điểm:
- Cần nắm được những kiến thức và kỹ thuật cơ bản.
- Chỉ có thể áp dụng với các loại rau quả, hoa ngắn ngày.
- Giá thành sản xuất còn cao.
- Chưa có được sự tin tưởng của một bộ phận người dân.

Bảng 1.1. So sánh giữa trồng cây theo phương pháp thổ canh và phương pháp thủy canh.

<table>
<thead>
<tr>
<th>Phương pháp thổ canh</th>
<th>Phương pháp thủy canh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trong đất trồng, các vi sinh vật phải phân hủy các chất hữu cơ phân tapiro thành các muối vô cơ có những nguyên tố cần yếu mà cây trồng có thể hấp thụ như nitrơ, phốt pho, kali ... và các nguyên tố vi lượng.</td>
<td>Thức ăn cho cây là các muối vô cơ mà cây có thể hấp thụ trực tiếp từ dung dịch dinh dưỡng,</td>
</tr>
<tr>
<td>Đất trồng không thể sẵn sàng nhiều chất dinh dưỡng trên mô diễn tích đủ cho hệ rễ có thể hấp thụ.</td>
<td>Cây trồng có thể nhận đầy đủ dinh dưỡng mọi lúc.</td>
</tr>
<tr>
<td>Khó xác định và kiểm soát mức độ dinh dưỡng, giá trị pH của môi trường đất để phù hợp với các loại cây trồng khác nhau. Có thể điều chỉnh dinh dưỡng của đất bằng cách bón phân nhưng khó xác định.</td>
<td>Giả trị pH và dinh dưỡng của môi trường được chủ động điều chỉnh và kiểm soát cho phù hợp với các loại cây trồng khác nhau.</td>
</tr>
</tbody>
</table>
định được nhu cầu cần thiết.

| Đạt trong dòng vai trò vật chủ đối với nhiều vi sinh vật gây hại, do đó có thể lay truyền mầm bệnh cho cây trồng. | Các môi trường thủy canh là tro, sạch, không mang mầm bệnh gây hại. |
| Đối hồi nhiều công chăm sóc: làm đất, tuổi tiêu, bón phân, diệt sâu bệnh gây hại..., cây sinh trưởng chậm và cần nhiều không gian để sinh trưởng. | Thủy canh làm tăng sự tăng trưởng và sản lượng trên mỗi diện tích nuôi trồng, giảm các bệnh gây hại và công chăm sóc. |

1.2.3. Các loại hình thủy canh.

Hiện nay có nhiều loại hình thủy canh khác nhau nhưng quy tủy lại có 3 hệ thống thủy canh chủ yếu được sử dụng trên thế giới

1.2.3.1. Hệ thống thủy canh tĩnh (thủy canh không hồi lưu)

- Là hệ thống có dung dịch dinh dưỡng được chứa trong thùng cọp hoặc các vật chứa cách nhiệt khác, dung dịch được bơm đều đặn vào thùng chứa khi cần thiết cho đến khi thu hoạch.
- Hệ thống này thích hợp với quy mô hộ gia đình ở các nước đang phát triển.
- Kỹ thuật thủy canh đơn giản và hiện đàng được triển khai nước ta.

![Hình 1.1. Mô hình thủy canh không hồi lưu](image)

1.2.3.2. Hệ thống thủy canh hồi lưu

- Hệ thống có dung dịch dinh dưỡng được bom tuần hoàn từ một bình chứa có lấp đất các thiết bị điều chỉnh tự động các thông số của dung dịch để duy trì các
bờ rễ nuôi cây, sau đó quay trở lại bình chứa để điều chỉnh lại các thông số và tiếp tục đi nuôi cây.

- Hệ thống này có hiệu quả kinh tế cao hơn, không đòi hỏi chất dinh dưỡng có cơ chế tự điều chỉnh độ axit, thích hợp với quy mô sản xuất lớn tự nhiên yêu cầu chỉ phí đầu tư cao.

- Kỹ thuật thủy canh mạng màng dinh dưỡng (NFT- Nutrient Film Technique) là một dạng thủy canh hồi lưu đang được áp dụng rộng rãi do tính chất và dáng vẻ bề ngoài của nó.

Hình 1.2. Hệ thống thủy canh hồi lưu

Hình 1.3. Cây trong hệ thống thủy canh hồi lưu

- Chất dinh dưỡng được cho vào các ống trong nơi mà rễ cây đâm xuống và hút lên, phân dưới thửa được rút xuống do trọng lực trở lại bề chứa. Một lớp mạng
mồng dinh dưỡng cho phép bộ rễ cây trồng tiếp xúc ổn định với chất dinh dưỡng và lớp khí phía trên cùng lúc.

1.2.3.3. Hệ thống khí canh

- Đây là hệ thống thủy canh cài đặt khi rễ cây không được những trực tiếp vào dung dịch dinh dưỡng mà phải qua hệ thống bơm phun dinh khi, nhờ vậy tiết kiệm được dinh dưỡng và bộ rễ được thơm thảo da.

- Trong kỹ thuật này cây trồng được đặt trong một thùng cách nhiệt, chỉ chứa sương mờ và hơi nước. Sương mờ chính là dung dịch dinh dưỡng được phun định kỳ vào những thời gian nhất định trong quá trình trồng cây. Cây trồng được treo lơ lửng trong thùng, chúng được duy trì trong điều kiện sống độc lập. Vì không sử dụng đất hay môi trường tổng hợp (giá thể) nên môi trường có độ sạch cao, không mang mầm bệnh.

- Dung dịch dinh dưỡng thưa sau khi sử dụng được thu lại, lọc, bổ sung và tiếp tục được sử dụng. Hệ thống có trọng lượng nhỏ nên dễ dàng bố trí trên nóc nhà hoặc sân thượng.

- Về nguyên tắc hệ thống này đem lại hiệu quả kinh tế cao. Trong hệ thống khí canh, nhiệt độ ở vùng rễ luôn thấp hơn nhiệt độ ngoài môi trường khoảng 2°C do hiệu ứng bốc hơi nhỏ vậy cây sinh trưởng nhanh hơn. Hệ thống này thích hợp với việc sản xuất rau và hoa trên quy mô lớn.

Hình 1.4. Hệ thống khí canh

1.3. Dinh dưỡng trong thủy canh

Theo TS. Võ Thị Bạch Mai [6]:

10
1.3.1. Nhiệm vụ của các nguyên tố dinh dưỡng

- Có tất cả 16 nguyên tố cần thiết cho sự sinh trưởng và phát triển của các loại cây trồng bao gồm: carbon (C), hydro (H), oxi (O), nitơ (N), kali (K), photpho (P), lưu huỳnh (S), canxi (Ca), magie (Mg), sắt (Fe), bo (B), mangan (Mn), đồng (Cu), kẽm (Zn), molypden (Mo) và clo (Cl). Trong đó, các nguyên tố C, H, O được cung cấp đầy đủ cho cây trồng từ không khí (CO₂ và O₂) và nước (H₂O). Các nguyên tố còn lại được gọi là nguyên tố dinh dưỡng hay nguyên tố khoảng cần thiết cho cây. Một lượng rất nhỏ các nguyên tố này có thể được cây hút từ gia thể (như K, N, Ca…) hoặc từ nước tiêu (như Ca, Mg…) còn lại hầu hết chúng được cung cấp bởi người trồng qua dụng dịch dinh dưỡng.

- Các nguyên tố N, P, K, Ca, Mg và S là những nguyên tố được cây sử dụng nhiều, hiện diện và phân nghiệp đến và phân trăm trong tổng trọng lượng chất khô nên được xếp vào nhóm các nguyên tố đa lượng. Những nguyên tố cần lại cây trồng chỉ cần lượng rất ít, tuy nhiên nếu thiếu chúng thì cây không thể sinh trưởng và phát triển bình thường nên được xếp vào nhóm các nguyên tố vi lượng.

- Sự thiếu hụt hoặc đủ thừa bất kỳ một nguyên tố nào đều thể hiện ra với những triệu chứng và đặc thù riêng, có thể cho ta biết là cây đang thiếu hụt loại nguyên tố nào.

1.3.1.1. Nguyên tố đa lượng

 a. Nitơ (N)

 - Nitơ là thành phần bắt buộc của protit – hợp chất đặc trưng cho sự sống. Nó có trong thành phần men, trong màng tế bào, trong diệp lục tổ mang chức năng cầu trục.

 - Các hợp chất của nitơ còn cung cấp năng lượng cho cơ thể, tham gia cấu tạo ADP, ATP.

- Nitơ còn có trong thành phần của nhiều loại vitamin B₁, B₂, B₆, PP,…, đóng vai trò là nhóm hoạt động của nhiều hệ enzym oxi hóa khử, trong đó có sự tạo thành adenine.

- Nitơ còn có tác động nhiều mặt đến sự đong hóa CO₂, khi thiếu nitơ cường độ đong hóa CO₂ giảm làm giảm cường độ quang hợp. Khi cung cấp đầy đủ nitơ cho cây làm tơ hàm lượng auxin tăng lên. Ngoài ra, nitơ còn ảnh hưởng đến các chỉ tiêu hóa keo của chất sống như độ ưa nước, độ nhót…từ đó ảnh hưởng đến cường độ quang hợp, hô hấp và các quá trình sinh lí trao đổi chất.

- Nitơ là nguyên tố đa lượng duy nhất mà cây tr đồ ng có thể hấp thụ dưới cả 2 dạng cation (NH₄⁺) và anion (NO₃⁻). Một vài dung dịch dinh dưỡng trồng lấn một lượng lớn NO₃⁻ và một lượng nhỏ NH₄⁺. Với NH₄⁺, ion H⁺ được giải phóng ra từ rễ và làm tăng tính axit của môi trường dinh dưỡng. Còn đối với nitơ được cung cấp dưới dạng NO₃⁻, ion OH⁻ được giải phóng ra từ rễ làm cho môi trường có tính kiềm sẽ làm cho pH môi trường dinh dưỡng thay đổi không đáng kể. Đồ pH sẽ được giữ không đổi người trồng biết điều chỉnh tỷ lệ thích hợp giữa NH₄⁺ và NO₃⁻. Thông thường các công thức thủy chuẩn nên giữ tỷ lệ NH₄⁺ ở mức dưới 20%.

- Tuy thuộc từng loại cây và từng giai đoạn sinh trưởng mà nhu cầu về nitơ khác nhau. Nếu cây trồng hấp thụ nitơ vượt quá nhu cầu thì thân cây mềm mỏng, dễ đổ lốp, chậm hinh thành cơ quan sinh sản, giảm khả năng chống chịu. Hơn nữa, nitơ dư thừa có khả năng tích lũy trong sản phẩm dưới dạng NO₃⁻, NO₂⁻ gây độc mặn tính cho người sử dụng. Tuy nhiên nếu không được cung cấp đủ lượng can thiêt cây sẽ bị cụm do thưa xenvululozo và lignin ở thành tế bào, thân lá, bộ rễ kém phát triển làm nâng suất giảm rõ rệt.

b. Photpho (P)

- Photpho là thành phần quan trọng trong sự sinh trưởng, photpho cần thiết cho sự phân chia tế bào, sự tạo hoa và trái, sự phát triển của rễ. Photpho có liên quan lớn đến sự tổng hợp đường, tính bột và photpho là thành phần của các hợp chất cao năng tham gia vào các quá trình phân giải hay tổng hợp các chất hữu cơ trong tế bào.

12
- Sau khi photpho xâm nhập vào thực vật dưới dạng các hợp chất vô cơ (P₂O₅, KH₂PO₄...) theo con đường đồng hóa photpho bởi hệ rễ đã tham gia vào hậu hết các quá trình trao đổi chất của cây. Photpho đồng vai trò quyết định sự biến đổi vật chất và năng lượng mà mối liên quan tương hỗ của các biến đổi do qui định chiều hướng, đường đỡ các quá trình sinh trưởng, phát triển cá cở thể thực vật và cuối cùng là năng suất của chúng.

- Khi thiếu photpho cây có thể biểu hiện rõ rệt ra hình thái bên ngoài, đối với những cây hoa thảo thiếu photpho cây sẽ mềm yếu, sinh trưởng của rễ, sự de nhanh, sự phân cách kém. Lá cây có màu xanh đậm do sự thay đổi tỷ lệ độ tổ và điểm tổ b. Ở những lá già thì đầu mút của lá và thân có màu đen, hàm lượng protein trong cây giảm, hàm lượng nitơ hòa tan tăng và năng suất giảm rõ rệt. Đối với cây ăn quả, tỷ lệ đầu quả kém, quả chín chậm, trong quả có hàm lượng axit cao.

- Ở môi trường có pH thấp, nhiều sát thi để bề thiếu photpho vi làm cho photpho ít linh động. Sự thiếu photpho thường đi đôi với sự thiếu nitơ và có triều chứng gần tương tự nhau với photpho liên hệ đến sự biến dương nitơ.

c. Kali (K)

- Kali làm gia tăng quá trình quang hợp và thúc đẩy sự vận chuyển gluxit từ phân lá vào các cơ quan. Kali còn có tác động rõ rệt đến sự trao đổi protit, lipit, đến quá trình hình thành các vitamin.

- Kali rất dễ xâm nhập vào tế bào, làm tăng tính thẩm của thành tế bào đối với các chất khác, tăng quá trình thủy hóa, giảm độ hơi, tăng hàm lượng nước liên kết. Kali còn ảnh hưởng đến quá trình tổng hợp tổng hợp các sắc tố trong lá, ảnh hưởng tích cực đến quá trình đề nhánh, hình thành bông và chất lượng hạt của các loại cây ngũ cốc.

- Kali rất cần thiết cho sự sinh trưởng và nó đóng vai trò quan trọng trong việc duy trì chất lượng quá. Ở cây cà chua có hàm lượng kali cao sẽ làm cho quá rắn chắc, phân thit quả để được giữ cùng trong một thời gian dài ngày cà khi hái quả vào giai đoạn chín.

- Tuy nhiên, vấn đề là khi tăng hàm lượng kali thì lại ảnh hưởng bất lợi cho việc hấp thụ magie. Nếu kali quá cao, thì cần phải sử dụng phương pháp phun
MgSO₄ trên lá. Nguyên kali được sử dụng thường được sử dụng là KNO₃, mặc dù K₂SO₄ đôi khi vẫn được sử dụng nhưng chỉ với mục đích cung cấp kali mà không làm tăng nồng độ của nitơ.

- Trong nhiều nghiên cứu của các nước có khí hậu bốn mùa rõ rệt thì trong suốt mùa đông, khi mà cả thời gian dài chỉ có máy, kali có thể được sử dụng với nồng độ cao hơn mùa hè. Tuy nhiên, khi sử dụng KNO₃, lượng nitơ thêm vào cần phải được tính toán. Nếu nitơ vượt mức cho phép nồng độ đường giảm, quá có vị nhật và gây ngộ độc nitrat.

- Kali giúp cho việc tăng tính chống chịu của cây với nhiệt độ thấp, khô hạn và các mầm bệnh.

- Khi thiếu Kali cây sẽ có biểu hiện: lá có màu xanh xám sẫm, đốm bì cháy hay có những đốm màu nâu, có khi lá bị cuộn lại thường xuất hiện ở lá già trước. Ngoài ra còn có một số triệu chứng khác như chở cành cơi, cây chét, không trở hoa, rễ kém phát triển, lòng ngán.

- Kali được cung cấp cho cây dưới dạng các muối với có KNO₃, KCl, K₂SO₄, KHCO₃, K₂HPO₄…

 d. Canxi (Ca)

- Canxi là thành phần trong muối pectat của tế bào (pectat calcium) có ảnh hưởng trên tính thâm của màng. Trong tế bào canxi hiện diện ở không bao, xuất hiện ở lá già nhiều hơn lá non.

- Canxi cần cho sự xâm nhập của NH₄⁺ và NO₃⁻ vào rễ, khi môi trường đất có pH thấp (3-4) thì ion Al³⁺ binh thường bị keo đất hấp thu sê phóng thích ra môi trường và đầu độc rễ.

- Ca²⁺ là ion kém linh động nên mạng tế bào thực vật ngoại hấp thụ dễ dàng. Khi nồng độ canxi trong môi trường cao thì sát bị kết tủa do độ làm giảm hàm lượng sát mà cây có thể hấp thụ bị giảm xuống hoặc không di chuyển được vào trong tế bào, làm lá cây bị vàng (vi sát là thành phần cấu tạo của diệp lục tổ) gây ảnh hưởng đến quá trình sinh trưởng. Canxi còn là chất hoạt hóa của vài enzyme nhất là ATPase. Canxi cần với một khối lượng lớn cho thân và rễ. Nó không được hấp thụ như những nguyên tố khác nên bất kỳ sự thiếu hụt nào cũng biểu hiện rất nhanh ở trên những lá non.
- Lượng thấp canxi cũng gây ảnh hưởng đến kích thước của trái. Sàn lượng thu hoạch sẽ bị giảm rất đáng kể nếu như hàm lượng canxi xuống dưới 100 ppm.
- Khi thiếu canxi, đặc biệt trong môi trường thủy canh thì chỉ bị nhưa dân đến sự hấp thụ chất dinh dưỡng bị trở ngại, cây ngừng sinh trưởng và chết. Biểu hiện thiếu ở ngọn chồi lá non thường bị xoắn, lá bị tua cháy bia lá, thân cuồng hoa gay.
- Canxi được cung cấp cho cây dưới dạng các muối với cơ Ca(NO₃)₂, CaCl₂, CaSO₄…
 e. Magie (Mg)
- Magie thành phần cấu trúc của diep lục tổ, có tác dụng sau sắc và nhiều mặt đến quá trình quang hợp, phục trợ cho nhiều enzyme đặc biệt là ATPase liên quan đến biến dưỡng carbohydrate, sự tổng hợp axtit nucleic, sự bắt cặp của ATP với các chất phân ứng.
- Khi thiếu magie lá bị vàng, quang hợp kém dẫn đến năng suất bị giảm.
- Sử dụng magie dưới dạng MgSO₄.nH₂O.
 f. Lưu huỳnh (S)
- Lưu huỳnh giữ vai trò đemouth trong tế bào (trao đổi anion với các tế bào).
- Lưu huỳnh là thành phần cấu trúc của một số axit amin như cystein, methyonin, tạo cấu nối S-S (disulfur) hình thành cấu trúc bậc 3 của protein. Ngoài ra, lưu huỳnh còn là thành phần của một vài enzyme.
- Thiếu lưu huỳnh sự sinh tổng hợp protein giảm, lá có màu lục nhạt hoặc biến vàng thinh thoáng có 1 phần là bị dỡ, do lưu huỳnh không đi chuyển nhiều trong cây nên triệu chứng thiếu lưu huỳnh thường thể hiện ở các lá non. Triệu chứng này gần giống với thiếu đạm, tuy nhiên thiếu đạm các lá ở tăng thấp bị vàng trước trong khi thiếu lưu huỳnh các lá mới, ở tăng cao biểu hiện trước. Do đó mà cây chậm lớn, năng suất giảm, chất lượng sản phẩm giảm.
- Cây hấp thụ lưu huỳnh chủ yếu dưới dạng các muối sunfat như K₂SO₄, MgSO₄.7H₂O, (NH₄)₂SO₄.

1.3.1.2. Nguyên tố vi lượng
 a. Kẽm (Zn)
- Tham gia trong quá trình tổng hợp auxin, việc kiểm soát quá trình tổng hợp aminoaxit, tiến thân của quá trình tổng hợp NAA (N-axetylaaspartate).
- Khi kiểm soát hoạt hóa của nhiều enzyme dehydrogenaza tham gia vào quá trình tổng hợp protein.
- Khi có tác dụng phối hợp với nhóm GA₃. Nó còn liên quan đến quá trình tổng hợp các vitamin B₁, B₂, B₆, B₁₂. Ngoài ra còn ảnh hưởng tốt đến độ bền của diệp lục tổ, thúc đẩy quá trình tổng hợp carotenoid.
- Khi kiểm soát sụn chuyển các sản phẩm quang hợp từ lá xuống các cơ quan dự trữ, tăng khả năng giữ nước, độ ẩm nước của mô do làm tăng quá trình tổng hợp các cao phân từ ura nước như protein, axit nucleic.
- Khi thiếu thì cuộc độ tổng hợp trypthphan từ indol và xerin bị kìm hãm nên không tạo được hoặc kém phát triển, lá bị bốc màu do sắc tố bị hủy hoại, lá kém phát triển, hình dạng lá không bình thường, lòng ngắn.
- Sử dụng kẽm dưới dạng muối ZnSO₄.7H₂O.
 b. Sắt (Fe)
- Có vai trò quan trọng trong phân ứng oxy hóa khử, là nhân tố của pooc phyrin, sát tham gia vào chuyển điện tử trong quá trình quang hợp. Sắt còn là xúc tác cho sự hấp CO₂ của OAA (oxaloacetic acid), succinic acid. Sắt đóng vai trò kết hợp giữa enzyme và đại chất để enzyme dễ dàng hoạt động.
- Bệnh thiếu sắt rất dễ xảy ra khi môi trường nhiều canxi hoặc pH môi trường quá kiềm vi sắt bị kết tủa dưới dạng hydrate sắt là ion bất động trong thực vật. Sự thiếu hụt nhanh chóng biểu hiện ở trên lá và sẽ ngăn cản sự sinh trưởng, phát triển của cây. Sự thiếu hụt sắt thường dẫn đến bệnh vàng lá trầm trọng do sự giảm lượng chlorophin trong lá, thường biểu hiện ở những lá non. Lá thường bị vàng hoàn toàn, bị cháy xém ở ngọn, mép lá.
- Cần phải duy trì độ pH can thiêt để đảm bảo sự ổn định sát trong dung dịch dinh dưỡng. Luong sát hòa tan sẽ giảm nhanh chóng trong môi trường có pH vượt quá 6,5.
- So với những nguyên tố khác, trong dung dịch dinh dưỡng hà lượng sát bị giảm khá nhanh do những nguyên nhân sau:
+ Quá trình oxy hóa sát bởi tia UV khi dung dịch dinh dưỡng được cung cấp cho cây dưới dạng các tia phun sương.
+ pH của dung dịch vượt quá 6,5.
+ Sự hấp thu của cây trồng cho sự sinh trưởng và phát triển.
+ Trở thành vật không tan bởi một số tác nhân của môi trường.

- Sử dụng môi trường làm tăng giá trị pH cũng có ảnh hưởng quan trọng đến khả năng hoạt động của sát, như việc sử dụng vật liệu đã với CaCO₃ sẽ làm tăng độ pH trong dung dịch, gây ra sự kết tủa PO₄³-, các ion sát và Mn²⁺ trong dung dịch dinh dưỡng.

- Sử dụng sát ở dạng chelat sát là tốt nhất, dạng chelat thường được sử dụng trong dung dịch thủy canh là Fe-EDTA (Etylendiamin tetra acetat) cung cấp khoảng 13,2% Fe. Một vài loại chelat khác có thể ở mức dưới 7%.
 c. Đồng (Cu)
- Đồng có vai trò gắn giữ với sát, nó là thành phần cấu trúc của nhiều enzyme xúc tác các phản ứng oxy hóa khác, can thiệp vào các phản ứng oxy hóa can phân từ O₂.
- Thiếu đồng là sẽ kém phát triển, có màu xanh đậm, nếu thiếu nhiều dẫn đến chết một phần của lá. Trên lá các loại cây ngứ có khi thiếu đồng còn gặp triệu chứng bia là mất diệp lục tố, ngọn lá bị hư. Ô cây ăn trái thiếu đồng thường bị chết ngược, sự mất diệp lục tố xảy ra, cây đang phân tán.
- Trong môi trường nuôi trồng thủy canh việc sử dụng đồng còn có tác dụng ngăn ngừa sự phát triển của các vi sinh vật trong môi trường dinh dưỡng.
- Đồng thường được sử dụng dưới dạng muối CuSO₄.5H₂O.
 d. Mangan (Mn)
- Ảnh hưởng của mangan đối với cây trồng khá giống sát, ngoại trừ bệnh vàng lá không xuất hiện ở các lá non như trong trường hợp thiếu sát. Có một vài dấu hiệu cho thấy sự ảnh hưởng lẫn nhau giữa các lượng khác nhau sát và mangan, cần phải phòng ngừa trước để chắc chắn rằng sự cần đối giữa mangan và sát là không đối trong giới hạn để cây trồng phát triển tốt nhất.
 e. Silic (Si)
- Mặc dù silic chưa được thừa nhận như một yếu tố thiết yếu cho thực vật cấp cao nhưng hiệu quả của nó đã được nghiên cứu nhiều trong thực vật. Silic có nhiều trong các cây đang phát triển, nhưng hầu như không hiện diện trong các cây trồng thủy canh. Từ lâu, silic được thừa nhận như là một yếu tố quan trọng cung cấp sự phát triển của lúa và một số cây ngũ cốc, nhưng theo một nghiên cứu gần đây cho thấy silic chỉ quan trọng giai đoạn ra hoa. Silic có hai tác dụng đáng kể sau:
 + Chống lại sự tấn công của côn trùng và bệnh tỳ.
 + Chống lại tác dụng độc của kim loại.
- Vì những lí do nói trên nên việc thêm silic (khoảng 0,1 mM) vào dung dịch thủy canh cho tất cả các cây là cần thiết.

1.3.1.3. Các nguyên tố khác

a. Oxi (O)
- Oxi đóng một vai trò quan trọng đối với sự sinh trưởng và phát triển của cây, do chức năng tham gia vào quá trình hô hấp.
- Chức năng sống có thể bị ngưng lại nếu không có quá trình hô hấp. Cây hấp thụ oxi từ khí quyển thông qua lá và từ nước thông qua rễ. Quá trình hấp thụ oxi từ rễ có thể bị giảm sút nếu rễ móc trong nước không được thoảng khí, hoặc ở giữa lớp cát mà không khí không thể vào được.

b. Hidro (H)
- Cây hấp thụ hidro phân lôn là từ nước, thông qua quá trình thấm thấu ở rễ. Dây là nguyên tố rất quan trọng vì chất béo và các cacbohydrat đều có thành phần chính là hidro, cùng với oxi và cacbon. Ngoài ra trong dung dịch dinh dưỡng thủy canh hidro là nguyên tố quyết định đến pH của dung dịch. Nó phải nằm trong phạm vi cho phép, những giá trị này được xác định tùy theo nhu cầu của từng loài cây trồng.

Bảng 1.2. Bảng tóm tắt triệu chứng thiếu hụt và nhiễm độc của một số nguyên tố khoảng trên cây cà chua.

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Triệu chứng thiếu hụt</th>
<th>Triệu chứng nhiễm độc</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Rẻ ốm, lá xanh xám, lá nhỏ</td>
<td>Thân và lá tăng trưởng vượt mức</td>
</tr>
<tr>
<td></td>
<td>Vói những lá phía dưới có màu vàng, chời hoa rung.</td>
<td>Bình thường, dễ bị đố lợp, lá có màu xanh rất đàm.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P</td>
<td>Sự thiếu hụt đầu tiên biểu hiện ở những lá trưởng thành, tán lá có màu xanh đen với những lá dưới có màu tía, lá rung sôm, cây cối cốc, thân cứng, hệ thống rễ kém phát triển, quá trình tạo quá có thể bị ngừng lại.</td>
<td>Không có dấu hiệu.</td>
</tr>
<tr>
<td>K</td>
<td>Lá bị cháy, lá cuộn lại và dễ rung, sinh trưởng hạn chế, quá chín không đều, thân mềm.</td>
<td>Khi dựa gây ảnh hưởng đến hoạt động của những nguyên tố khác.</td>
</tr>
<tr>
<td>Mg</td>
<td>Vàng ở giữa các van với các van trắng màu xanh, mép lá xoắn lại, hình thành quá giảm nếu thiếu nghiêm trọng.</td>
<td>Lá lón có màu sáng.</td>
</tr>
<tr>
<td>Fe</td>
<td>Lá non bị biến vàng lá, triệu chứng lan nhanh đến những lá già hơn, sinh trưởng kém, hoa rung.</td>
<td>Không có dấu hiệu.</td>
</tr>
<tr>
<td>Mn</td>
<td>Xuất hiện những đốm vàng trên lá, bệnh vàng lá ít nghiêm trọng hơn so với khi thiếu Fe, lá có mạng, rất ít hoa được hình thành.</td>
<td>Sinh trưởng chậm và thân nhỏ.</td>
</tr>
<tr>
<td>S</td>
<td>Vàng lá, gần lá có màu sáng hơn những vùng xung quanh, Giảm kích thích và sự tăng trưởng của lá.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Những lá ở phía trên bị quấn xuống.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>Lá non bị quấn lại, cuối cùng chết ở phía lủng từ đầu nọn và mép lá, xuất hiện những điểm chết, quá phụ thuộc vào nò hoa và cuối cùng bị thối rữa, thân dày và hoa gố, rè nâu và phát triển kém.</td>
<td></td>
</tr>
<tr>
<td>Bo</td>
<td>Lá non có màu xanh sáng, lá trên nhô và xoắn vào trong, thân nứt nẻ và những vùng hóa libe phát triển, trái có màu tối và khô.</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Lá có kích thước nhỏ, mép lá bị vẩn, cuồng hoa có lòng ngắn lại.</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Lá non bị béo với những chấm và dấu hiệu của bệnh vàng lá, lá có màu hơi xanh, cuồng hoa có thể chúi xuống dưới, rất ít hoa được tạo thành.</td>
<td></td>
</tr>
<tr>
<td>Mo</td>
<td>Lá bị xoắn, những lóm dốm ở trong gân lá phát triển đầu tiên ở những lá già, lá bị khô hoặc cháy xém.</td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>Không có dấu hiệu.</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>Không có dấu hiệu.</td>
<td></td>
</tr>
</tbody>
</table>
1.3.2. Dùng dịch dinh dưỡng

1.3.2.1. Sự pha chế

- Một khi giá thể không đông dỗi gì vào sự sinh trường và sản lượng thu hoạch thì tất cả các chất dinh dưỡng đều phải được thêm vào trong nước. Bàn than nước cung cấp cho cây cũng có chứa một vài chất khoáng hòa tan có ích cho cây. Các chất dinh dưỡng được sử dụng trong môi trường thủy canh bắt buộc phải hòa tan hoàn toàn trong nước, nếu thêm bất kì chất nào không tan trong nước thì không có tác dụng gì đối với cây.

- Trong thủy canh tất cả các chất cần thiết cung cấp cho cây đều được sử dụng dưới dạng các muối khoáng vô cơ được hòa tan trong dung môi là nước.

- Nhiều công thức dinh dưỡng được công bố và sử dụng thành công cho nhiều đối tượng cây trồng như cải xà lách, cải ngọt, bông cải dầu tây, nho và các loài hoa...

- Điều đáng chú ý là nếu sử dụng các môi trường dinh dưỡng với dạng nước thì phải nấm rơ nguyên tắc pha chế để chúng không bị kết tủa làm mất tác dụng của hóa chất.

Ví dụ: Ca\(^{2+}\) và PO\(_4^{3-}\) nếu pha chung sẽ tạo muối kết tủa Ca\(_3\)(PO\(_4\))\(_2\).

- Trong thủy canh, các muối khoáng sử dụng phải có độ hòa tan cao, tránh làm các tạp chất. Môi trường dinh dưỡng đạt yêu cầu cao khi có sự cân bằng về nồng độ ion khoáng sử dụng trong môi trường để đảm bảo pH ổn định trong khoảng từ 5,5 - 6,0. Đây là khoảng pH mà đa số cây trồng sinh trưởng và phát triển tốt.

- Sự thành công hay thất bại của việc trồng thủy canh phụ thuộc vào pha chế đúng dịch dinh dưỡng, điều này có thể đạt được tùy thuộc vào pH, nhiệt độ và độ dẫn điện của môi trường.

1.3.2.2. Độ pH

- Độ pH được hiểu theo nghĩa đơn giản là một số đo chỉ số axit hoặc bazo của môi trường nhận các giá trị trong khoảng từ 1 - 14. Trong môi trường dinh dưỡng, độ pH rất quan trọng cho sự sinh trưởng và phát triển của cây.
- Môi trường trung tính có giá trị: pH = 7
Môi trường axit có giá trị: pH < 7
Môi trường bazo có giá trị: pH > 7
- Việc xác định pH của môi trường dinh dưỡng có thể do bằng pH kế hoặc giấy do pH.
- Sự thay đổi pH trong dụng dịch dinh dưỡng thường xảy ra khá nhanh, phụ thuộc vào kích thước của hệ thống rễ và thể tích dinh dưỡng của một cây. Sự sinh trưởng của cây là một trong những nhân tố làm cho môi trường trở nên có tính axit hơn, vì trong quá trình sinh trưởng rễ giải phóng ra các axít hữu cơ và ion H⁺.
- Độ pH có ảnh hưởng lớn đến mức độ hoạt động của các nguyên tố khác nhau với cây trồng. Dưới 5,5 thì khả năng hoạt động của P, K, Ca, Mg và Mo giảm đi rất nhanh, trên 6,5 thì Fe và Mn trở nên bất hoạt. Do đó, việc điều kiện pH của dung dịch dinh dưỡng rất quan trọng. Trong thủy canh, đa số các cây trồng thích hợp với môi trường hoàn axit đến gần trung tính, pH tối ưu từ 5,8 – 6,5
- Nếu pH xuống dưới 5,5 thì KOH hoặc một vài chất có tính kiềm phù hợp khác có thể được thêm vào dung dịch để pH tăng lên. Nếu pH quá cao, H₃PO₄ hay HNO₃ có thể được sử dụng. Trong đó, H₃PO₄ thường được sử dụng nhiều hơn, vì nó bổ sung PO₄³⁻ vào môi trường dinh dưỡng. Tuy nhiên, trong trường hợp pH cao là do lượng Ca(HCO₃)₂ quá cao trong dung dịch thì nên sử dụng HNO₃ vi nếu thêm H₃PO₄ trong trường hợp này, PO₄³⁻ sẽ kết hợp với Ca²⁺ tạo muối kết tủa làm giảm hàm lượng Ca²⁺ mà cây có thể hấp thụ. Để chọn ra các hóa
chất thích hợp trong quá trình điều chỉnh pH cần tiến hành các thử nghiệm và cho ra những cảnh báo thích hợp.

- Ngoài ra, người ta còn có thể sử dụng một số hóa chất thích hợp có tính dễ trong dung dịch dinh dưỡng. Đó là những chất có khả năng chống lại sự thay đổi pH của môi trường, tức là duy trì nồng độ H^+ trong một khoảng cho trước. Trong hệ thống thủy canh rất ít chất dễ thích hợp, thường dùng nhất là các muối của фотpho ($H_2PO_4^-$, HPO_4^{2-}). Tuy nhiên, nếu duy trì hàm lượng fotospho ở các muối trên ở mức đủ để ổn định pH (1 - 10mM) thì sẽ gây hại cho cây.

- Trong nuôi trồng thủy canh, pH có thể được can dạng bởi hoạt động của cây. Nếu pH tăng (môi trường bị kiềm hóa) thì độ cây sẽ thải ra các muối axit vào môi trường nhưng điều này lại làm tăng lượng độc tố trong môi trường và làm hạn chế sự sinh trưởng. Nếu pH giảm (môi trường bị axit hóa) thì cây sẽ thải ra các ion bazơ, quá trình này có thể làm hạn chế quá trình hấp thu các muối gốc axit.

- Nhìn chung, pH của môi trường thủy canh cần được kiểm tra thường xuyên 2 - 3 lần/ tuần, nên thực hiện việc kiểm tra này vào các thời điểm có nhiệt độ như nhau bởi vì pH của môi trường có thể bị thay đổi theo ánh sáng và nhiệt độ.

1.3.2.3. Nhiệt độ

- Đạo động về nhiệt độ trong môi trường dinh dưỡng thủy canh không chỉ tác động đến pH mà còn ảnh hưởng đến độ hòa tan của các chất dinh dưỡng.

- Nghiên cứu về nhiệt độ của nước đối với sự hòa tan của các khoáng chất được sử dụng thì khoảng nhiệt độ thích hợp nhất là 20°C – 22°C. Nếu nhiệt độ thấp hơn khoảng nhiệt độ trên thì các chất khó hòa tan được.

1.3.2.4. Bổ sung chất dinh dưỡng

- Hai yếu tố cần được xem xét để nghiên cứu một dung dịch bổ sung:
 + Thành phần dinh dưỡng.
 + Nồng độ dinh dưỡng.

- Trong thời gian sinh trưởng và phát triển của cây, cây sẽ sử dụng các chất dinh dưỡng theo nhu cầu đổi hỏi của chúng.
- Đối với loại cây có thời gian sinh trưởng tương đối dài thì việc bổ sung dinh dưỡng là rất cần thiết.
- Trong nghiên cứu người ta có thể dựa vào giá trị của đồ dẫn điện (EC), tổng lượng chất rắn hòa tan (TDS) của các máy đo để điều chỉnh bổ sung chất dinh dưỡng vào môi trường trồng thủy canh.
- Đồ dẫn điện (EC) để chỉ tính chất của một môi trường có thể truyền tải được dòng điện. Đồ dẫn điện của một dung dịch là khả năng dẫn điện của dung dịch này được đo bằng những điện cực có diện tích bề mặt là 1cm² ở khoảng cách 1cm, đơn vị tính là mS/cm; hầu hết các dung dịch dinh dưỡng có giá trị EC nhỏ hơn 4 mS/cm, nếu lớn hơn sẽ gây hại cho cây trồng.
- Tổng khối lượng chất rắn hòa tan được đo bằng những máy đo TDS theo đơn vị ppm

Bảng 1.3. Một số giới hạn EC và TDS đối với một số loại cây trồng.

<table>
<thead>
<tr>
<th>Cây trồng</th>
<th>EC (mS/cm)</th>
<th>TDS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cầm đường</td>
<td>2,4 – 5,0</td>
<td>1400 - 2450</td>
</tr>
<tr>
<td>Địa lan</td>
<td>0,6 – 1,5</td>
<td>420 - 560</td>
</tr>
<tr>
<td>Hoa hồng</td>
<td>1,5 – 2,4</td>
<td>1050 - 1750</td>
</tr>
<tr>
<td>Cà chua</td>
<td>2,4 – 5,0</td>
<td>1400 - 3500</td>
</tr>
<tr>
<td>Hạt quả</td>
<td>0,6 – 1,5</td>
<td>280 - 1260</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Xà lách xong</td>
<td>1,5 – 2,4</td>
<td>280 - 1260</td>
</tr>
<tr>
<td>Cây chuối</td>
<td>2,4 – 5,0</td>
<td>1260 - 1540</td>
</tr>
<tr>
<td>Cây dựa</td>
<td>2,4 – 5,0</td>
<td>1400 - 1680</td>
</tr>
<tr>
<td>Dâu tây</td>
<td>1,5 – 2,4</td>
<td>1260 - 1540</td>
</tr>
<tr>
<td>Ớt</td>
<td>1,5 – 2,4</td>
<td>1260 - 1540</td>
</tr>
</tbody>
</table>

- Ngoài ra còn sử dụng chỉ số DO (Dissoved oxigen) để xác định độ thoáng của môi trường dinh dưỡng:

- DO là đơn vị dùng để đo lượng khí O2 hòa tan trong 1 lít nước, đơn vị (mg/l).
 Chi số DO cao thuận lợi cho hoạt động hô hấp và biến dưỡng của hệ rễ.
- DO phụ thuộc vào nhiệt độ, áp suất và độ mặn của dung dịch.

1.4. Ảnh hưởng của môi trường bên ngoài đến sự hút các chất dinh dưỡng của rễ và biến dưỡng ở hệ rễ.

1.4.1. Ảnh hưởng của nồng độ CO2

- CO2 cùng H2O tham gia tổng hợp chất hữu cơ.
- Thành phần CO2 trong khí quyển khá ổn định khoảng 0,03% thể tích.
 Vd: Ca(HCO₃)₂ ⇌ CaCO₃ + H₂O + CO₂
- Khi hàm lượng CO2 trong nước tăng lên một ít thì làm tăng cường độ quang hợp, đồng thời gây ảnh hưởng lớn đến hô hấp của hệ rễ.
- Hệ thống carbonat không chỉ là nguồn dinh dưỡng mà còn là chất đệm để giữ nồng H⁺ trong môi trường nước ở gần với giá trị trung tính.
1.4.2. Ảnh hưởng của độ thay đổi khí đến sự hút chất dinh dưỡng

- Trừ nhóm sinh vật khi bắt đầu, còn lại các sinh vật khác đều cần khi oxy để hô hấp. Khi hô hấp hiệu khi 50% vật chất oxy hóa được chuyển thành năng lượng.

- Trong thành phần khí quyển, oxy chiếm tới khoảng 21% thể tích, do đó sinh vật dễ dàng hấp thu oxy từ không khí. Trong khi đó trong đất và trong nước việc hấp thu O$_2$ khó khăn hơn, nó phụ thuộc vào cấu trúc của đất, chế độ canh tác, hệ vi sinh vật…Nguyên O$_2$ trong nước là do O$_2$ khuếch tán từ không khí (nhỏ gió, sự chuyển động của nước), nhưng bằng cách này O$_2$ khuếch tán vào nước chậm do độ tan của O$_2$ trong nước rất thấp. Bên cạnh đó, nguồn oxy trong nước cũng dễ dàng bị mất đi do hoạt động của các loại tảo, vi sinh vật có trong nước, các phần ứng oxy hóa các hợp chất trong nước, …

- Các nghiên cứu đã thấy sự hút các chất khoáng đạt mức cao nhất ở môi trường có nồng độ O$_2$ từ 2 – 3%. Khi nồng độ O$_2$ dưới 2% tốc độ hút khoáng giảm. Nhưng nếu tăng nồng độ O$_2$ trên 3% thì tốc độ hút khoáng cũng không thay đổi.

- Trong phương pháp thủy canh không hồi lưu cây trồng dễ bị thiếu hụt oxy cần thiết cho sự hô hấp của rễ, dễ khắc phục những điểm này người ta thường sử dụng một máy bơm oxy vào dung dịch.

1.4.3. Ảnh hưởng của sự ngập ứng đối với hệ rễ

- Sự thiếu O$_2$ trong vùng rễ xảy ra khi đặt thoát nước kém sau con mua hoặc sau khi trôi, gây giảm tăng trưởng và giảm năng suất ở cây trên cánh.

- Các tế bào vùng sinh mọc gốc rễ cần phải sống để có sự phát triển tiếp tục những thay đổi biến dưỡng trong điều kiện thiếu O$_2$ giúp duy trì sự sống tế bào bằng cách sản sinh ATP trong điều kiện ki khí và giảm tối thiểu axit hóa tế bào chát.

- Mặc dù mọi thực vật bậc cao cần có nước tự do, nhưng nếu quá nhiều nước trong môi trường, rễ cây trên cánh có thể bị tồn hai thức chỉ gây chết vì nó ngăn can sự trao đổi di chuyển của oxy và các khí khác, giữa đất và khí quyển.
- Khi bị ngập thời gian ngắn, rễ cây bị thiếu O₂ do O₂ hòa tan và chuyển chậm trong những khe đất đầy nước. Khi đất ẩm lên số hơi hấp của vi sinh vật được kích thích thì O₂ có thể bị can kiêt hoàn toàn trong vòng 24 giờ và rễ chuyển từ điều kiện thông khí sang môi trường kí khí. Người ta đã biết về những ảnh hưởng bất lợi của sự ngập nước trên sự phát triển cũng như năng suất của nhiều cây trồng. Trong khi đó nhiều loại ưa nước lại phát triển tốt trong điều kiện thiếu O₂ như vậy. Phải chăng có một sự khác biệt căn bản về sinh hoá học giữa những loại “chứ ngập” và những loại “không chịu ngập”. Nên sự hiểu biết khác biệt này có thể khai thác qua con đường sinh học phân từ chọn cây trồng, phát triển nuôi trồng những thực vật mà nó có thể chịu được những thời gian thiếu O₂ lâu hơn.

1.4.4. Ảnh hưởng của nhiệt độ đến sự hút khoáng

- Nhiệt độ là yếu tố quan trọng ảnh hưởng đến sự sinh trưởng và phát triển của thực vật nói chung và cây chuối nói riêng trong quang hợp, hô hấp, các phản ứng biến dưỡng trên sự đỉnh dưỡng nước, khoáng, sự thoát hơi nước và chuyển nhượng.

- Một số nghiên cứu cho thấy khi tăng nhiệt độ ở một giới hạn hẹp đã làm tăng sức hút các chất dinh dưỡng. Chẳng hạn, rễ cây đại mạch non sau 10 giờ đã tích lũy K⁺, NO₃⁻, và Cl⁻ nhiều hơn từ 5 - 10 lần so với ở 6 °C. Về cơ chế ảnh hưởng của nhiệt độ lên sức hút khó khoảng nhiều tác giả cho thấy nhiệt độ đã ảnh hưởng chủ yếu lên quá trình trao đổi chất, lên quá trình liên kết giữa các phân tử trong chất nguyên sinh với các nguyên tố khó khoảng.
1.4.5. Ảnh hưởng của ánh sáng đến sự hút khoáng

- Ánh sáng ảnh hưởng mạnh đến sự hút khoáng. Nếu để cây tập trong tối 4 ngày thì khả năng hấp thụ P không xảy ra, và khả năng này sẽ phục hồi dần khi đưa cây tập xa ngoài ánh sáng. Ánh sáng ảnh hưởng mạnh đến khả năng hấp thụ NH₄⁺, SO₄²⁻ tăng mạnh trong khi độ sự hấp thụ Ca và Mg ít thay đổi. Nhìn chung tác động của ánh sáng liên quan đến quang hợp, trao đổi nước và tình thẩm thấu của chất nguyên sinh.

1.4.6. Ảnh hưởng của nồng độ và tỉ lệ các nguyên tố khoáng ở môi trường ngoài đến sự hút khoáng

- Khi nghiên cứu về tỉ lệ giữa các ion trong môi trường và môi liên hệ giữa chúng với trường hợp hút khoáng, người ta thấy có 3 hình thức tương quan giữa các ion: đối kháng, hỗ trợ và không ảnh hưởng lẫn nhau.

- Trong đó, hiện tượng đối kháng ion là hình thức tương quan phổ biến đối với các cation. Ví dụ: khi tăng nồng độ K⁺ thì nồng độ Ca²⁺ giảm một cách tương ứng giữa các anion cũng xảy ra hiện tượng đối kháng như giữa Cl⁻ và NO₃⁻, NO₃⁻ và PO₄³⁻.

- Do đó, trong dinh dưỡng thủy canh cần điều chỉnh tỉ lệ các nguyên tố khoáng thích hợp để tránh xảy ra hiện tượng đối kháng lẫn nhau.

1.4.7. Ảnh hưởng của nắm bệnh trong dung dịch thủy canh

- Nấm là loại bệnh nghiêm trọng mà chúng ta gặp trong hệ thống này, rất hiểm khi thấy bệnh khi tất cả các phần trong hệ thống được giữ gìn sạch sẽ. Các nhà nghiên cứu bệnh lý học thực vật cho rằng điều kiện vệ sinh như là một phương thức điều kiện tốt nhất.

- Nhiều tác giả cũng nhận thấy nếu lượng mangan bị thiếu hụt sẽ làm cây dễ bị nhiễm nấm. Một thí nghiệm ngoài nhiều đã sử dụng MgCl₂ thay cho MnCl₂ trong dung dịch vi lượng. Trong suốt thời gian thí nghiệm có một vài hệ thống nhiễm nấm nhưng các hệ thống tương tự không bao giờ nhiễm khi có đủ mangan. Coban cũng có khả năng dẫn áp sự phát triển của vi khuẩn nhưng nếu tăng lượng coban sẽ gây độc tới cho cây. Mangan và kẽm cũng có khả năng này
nhưng ít gây độc hơn. Để giảm thiểu sự phát triển của năm bện cạnh tăng lượng mangan cao hơn mức tối thiểu cần cho cây phát triển.

1.4.8. Ảnh hưởng của các giá thể nuôi trồng thủy canh

- Giá thể trồng cây phải có nhiều tính chất giống đạt, phải có chỗ đủ ra cho hệ thống rễ, tạo điều kiện cho rễ mọc dài ra để tìm nước và chất dinh dưỡng cho sự sinh trưởng và phát triển của cây.

- Có nhiều vật liệu thích hợp có thể sử dụng làm giá thể trong thủy canh. Việc lựa chọn một gia thể nào đó phụ thuộc vào các yếu tố bao gồm giá tiền, hiệu quả, cân nặng, ti lệ xổ, tính đồng đều và bền vững, tính vô trùng cao, bền và có khả năng tái sử dụng được. Giá thể phải không chứa các vật thể gây độc có thể gây ảnh hưởng tới môi trường dinh dưỡng và độ pH của môi trường.

- Khả năng hút nhiệt cũng là một tính quan trọng. Giá thể có màu đen bị nóng nhanh hơn khi phơi ngoài sáng, làm cho nhiệt độ tăng lên ở xung quanh rễ. Giá thể như Perlite, vermiculite và đất sét là những vật liệu cách nhiệt, tăng và giữ nhiệt độ chấm trong môi trường.

- Người ta sử dụng nhiều cơ chất khác nhau trong nuôi trồng thủy canh. Tuy nhiên một trong số những đối hồi duy nhất của việc nghiên cứu đó là rễ cây phải dễ dàng tách ra khỏi môi trường. Than bún, perlite và vermiculite là những cơ chất tốt, nhưng rễ thường dính sáu trong môi trường nên dễ gặp khó khăn trong việc nghiên cứu kích thước, hình thái của rễ. Đối với môi trường cát, ta dễ dàng lấy ra những rễ phát triển trong cát thường ngắn và ôm hon vì cát chất hon. Cây phát triển trong cát ít tốn hon trong những cơ chất khác, có lẽ vì sự phát triển của rễ kém hon. Trong nhiều năm qua, người ta thường dùng đất nung (hay còn gọi là Turface, Profil, Arcillite) để nghiên cứu thủy canh vì loại rễ cây ra không dễ mất. Tuy nhiên đất nung có hai điểm bất lợi:

 + Không có tính tro về mặt hoá học. Những loại đất nung khác nhau cho ra những dinh dưỡng khoáng khác nhau và điều này làm cho kết quả nghiên cứu không còn chính xác. Có thể dùng đúng dịch để rưa những chất không mong muốn nhưng gây tổn kém.

 + Đất nung có kích cỡ không giống nhau và khả năng hấp thu nước tùy thuộc vào kích thước, cho nên tính đồng nhất không giống nhau.

29
- Gần đây, một sản phẩm mới được dòng ép gọi là isolite. Isolite được khai thác ở vùng biên Nhật bản là nơi duy nhất có loại này, nó được trồng với đấtiset 5% (dòng vai trò như chất kết dính). Ngoài ra trong thành phần của nó còn có SiO₂ (Dioxid Silic). SiO₂ có tính tro cao và hoá học. Isolite có kích cỡ đường kính từ 1 – 10 mm. Các thí nghiệm cho thấy isolite có tính tro cao và tính giữ nước tốt. Tuy nhiên, điểm bất lợi của nó là giá cả của nó khá cao.

Một số giá thể hữu cơ được sử dụng:

1.4.8.1. Than bùn:

- Đây là chất tốt nhất trong các giá thể hữu cơ có khả năng giữ nước và chất dinh dưỡng cao hơn các loại giá thể hữu cơ khác. Than bùn có chứa nhiều khoáng như: N, P, Ca, Mg và một số nguyên tố vi lượng trong đó có silic.
- Thông thường trong nuôi trồng thủy canh, than bùn được dùng để nuôi trồng các loại cây cho quá Như: cà chua, dưa leo, ớt tay, dâu tay…
- Than bùn cần thân trong trước khi sử dụng.

1.4.8.2. Mùn cưa:

- Mùn cưa, cát và hỗn hợp hai vật liệu đó được dùng có kết quả để sản xuất dưa chuột. Một hòn hợp có khoảng 25% cát có lệ là phần bọ đất đông đều hơn khi dùng riêng mùn cưa.
- Cần phải chú ý không phải mùn cưa nào cũng thích hợp như nhau, một số mùn cưa có chất độc khi còn tươi, có thể ảnh hưởng môi trường dinh dưỡng.

1.4.8.3. Vỏ cây, xơ dừa:

- Đây là vật liệu trồng đối rất tiện, có khả năng chống phân hủy do vi khuẩn cao. Phần lớn các nghiên cứu dùng vỏ cây hoặc xơ dừa, cần phải cho dòng nước chảy chậm để loại luôn hở chất tanin có trong vỏ cây và xơ dừa.

1.4.8.4. Cát:

- Cát là một trong những giá thể tốt nhất có thể sử dụng. Tuy nhiên, cần phải kiểm tra để chắc chắn rằng nó không bị ô nhiễm bởi đất và nó thích hợp khi trồng thủy canh. Cát không nên quá nhỏ cũng không nên quá thô, kích thích hạt thay
đối với nhất từ 0,10 – 1,00 mm, với mức độ trung bình từ 0,25 – 0,50 mm. Cát có nguồn gốc từ biển, cần phải loại bỏ hoàn toàn muối. Vò sò lấn trong cát có thể gây rác rối nếu không xử lý thích hợp, do vò sò nhỏ phân lọn chứa đá vôi và nếu bờ trong dung dịch nó sẽ làm cho pH tăng lên. Đớ kiểm tra giữ chất sát lại trong dung dịch, gây hiện tượng tiêu thụ chất sét cho cây.

1.4.8.5. Sỏi:
- Cũng giống như cát, hạt sỏi không chứa đá vôi, do đó không gây ảnh hưởng đến độ pH. Sử dụng sỏi có nhiều thuận lợi, vạn nên giữ nước có thể giảm đến mức tối thiếu bằng cách sử dụng hỗn hợp gồm 40% perlite và 60% sỏi về thể tích.

1.4.8.6. Scoria (xì nham thạch):
Đây là một loại đá trên bề mặt núi lửa, có khả năng giữ nước rất tốt. Scoria có một số tính chất lý tưởng để làm giá thể như:
+ So với sỏi và cát nó nhẹ hơn. Tỷ trọng khoảng 600 – 1000 kg/m³.
+ Vì được hình thành nơi có nhiệt độ rất cao nên nó trơ, khô, có nhiều kích thước khác nhau.
+ Rất xốp, có nhiều lỗ khí và túi khí.
+ Khả năng giữ nước khoảng 250 –350 kg/m³.
+ Cách nhiệt tốt, không dẫn điện từ thành nhựa của vỏ châu vào giá thể.

1.4.8.7. Vermiculite:
- Vermiculite là một loại magie nhôm silicat ngâm nước dưới dạng tinh thể đất. Sau khi được xử lý, vermiculite là một vật liệu nhẹ có tỷ trọng theo khối lượng trung bình khoảng 80 kg/m³. Đối với nó phải ửng kiểm do sự có mặt của đá vôi magie trong quảng nguyên thủy. Có khả năng trao đổi lẫn khả năng giữ nước cao. Tuy nhiên, sau một thời gian kéo dài, cấu trúc của vermiculite có chiều hướng thoái hoá và vật liệu chuyển hoá về mặt vật lý để trở lại trạng thái tự nhiên ban đầu tạo thành.
1.4.8.8. Perlite:
- Perlite là một dẫn xuất của đá núi lửa chứa silic. Vật liệu có khoảng 2 – 5% ẩm, và sau khi nghiêm và gia nhiệt tới khoảng 1000°C, sė nó ra tạo thành một vật liệu có tỷ trọng nhẹ theo thể tích 130 – 180 kg/m³. Vật liệu có một cấu trúc hạt chẽ, khả năng giữ nước tốt, có tính ổn định vật lý, và đối với phần lớn các mục đích sử dụng có tính tro hoá học. Tuy nhiên, nó chứa 6,9 % nhôm và một phần nhỏ có thể giải phóng trong dung dịch pH thấp gây ra những hâu quá bất lợi cho sự sinh trưởng của cây.

1.4.9. Ảnh hưởng của chất lượng nguồn nước
- Chất lượng nước thích hợp cho con người sử dụng thì sẽ thích hợp cho việc nuôi trồng thủy canh. Nước máy hay nước giếng thông thường có chứa một lượng lớn ion canxi và magie được gọi là nước cung.
- Trước khi tiến hành thủy canh với một phạm vi rộng lớn, chúng ta phải biết được thành phần các chất khoáng có trong nước sử dụng. Phân tích chi ra rằng có một sự thay đổi rất lớn giữa các mùa trong năm, giữa mùa khô và mùa mưa có một sự khác biệt rất lớn về lượng muối có trong nước.
- Nước mưa cũng là một nguồn nước có thể sử dụng được. Tuy nhiên, nhiều phân tích cho thấy nước mưa từ mái nhà và được giữ trong những thùng mà kèm thì không tốt, kèm dần dần được giải phóng ra từ thành của thùng chứa sau một thời gian, nếu quá nhiều kem gây ra triệu chứng như sự thiếu hụt sát.

1.5. Phương pháp thủy canh tĩnh (thủy canh không hồi lưu)

1.5.1. Khái niệm
- Theo Th.S. Nguyễn Văn Chung [2], thủy canh tĩnh là hệ thống có dung dịch dinh dưỡng được chứa trong thùng xổ hoặc các vật chứa cách nhiệt khác, dung dịch được bổ sung đều đặn vào thùng chứa khi cần thiết cho đến khi thu hoạch.

1.5.2. Úu, nhược điểm

1.5.2.1. Úu điểm:
- Mang các ưu điểm của phương pháp thủy canh nói chung.
- Chi phí đầu tư thấp, tận dụng được các vật liệu có sẵn, thích hợp với quy mô hộ gia đình.
- Đơn giản, dễ thực hiện.
- Gọn nhẹ, dễ dàng di chuyển khi cần thiết.
- Có khoảng cách thích hợp giữa cây trồng và dụng dịch, tạo điều kiện một phần restrained lỏng và thở trong không khí, phần còn lại nằm trong dụng dịch hút nước và chất dinh dưỡng.
- Tận dụng được diện tích sân thượng, ban công.

1.5.2.2. Nhược điểm:
- Hiệu quả thấp hơn những phương pháp thủy canh khác.
- Đòi hỏi nhiều công chăm sóc, kiểm soát hệ thống.

1.5.3. Vật liệu, dụng cụ
- Thùng xốp, thùng nhựa hoặc bè xi măng.
- Khung nặng đỏ và bảo vệ các thùng trồng thủy canh, khung có mái che và lưới bảo vệ.
- Ly nhựa hay rọ nhựa.
- Già thể.
- Ngoài ra nên sử dụng thêm máy súc khí oxy, các thiết bị kiểm soát môi trường dinh dưỡng: bút đo TDS, bút đo pH (hoặc giấy đo pH).
- Hạt giống hoặc cây con.
- Dung dịch dinh dưỡng.

1.6. Tính toán dinh dưỡng trong kỹ thuật thủy canh:

Theo PGS.TSKH. Nguyễn Xuân Nguyên [7]:
- Mọi vật chất trên trái đất đều được tạo ra nhờ sự kết hợp của các chất khác nhau được biết đến dưới tên gọi là các nguyên tố hóa học. Có trên 100 nguyên tố hóa học, nhưng trong kỹ thuật thủy canh chúng ta chỉ làm quen trực tiếp với khoảng 15 nguyên tố.

Bảng 1.4. Danh mục các nguyên tố thường sử dụng trong thủy canh và khối lượng nguyên tố của chúng
<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Ký hiệu</th>
<th>Khối lượng nguyên tử</th>
<th>Khối lượng nguyên tử làm tròn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bo</td>
<td>B</td>
<td>10,82</td>
<td>11</td>
</tr>
<tr>
<td>Canxi</td>
<td>Ca</td>
<td>40,08</td>
<td>40</td>
</tr>
<tr>
<td>Cacbon</td>
<td>C</td>
<td>12,01</td>
<td>12</td>
</tr>
<tr>
<td>Clo</td>
<td>Cl</td>
<td>35,46</td>
<td>35</td>
</tr>
<tr>
<td>Đồng</td>
<td>Cu</td>
<td>63,57</td>
<td>64</td>
</tr>
<tr>
<td>Hydro</td>
<td>H</td>
<td>1,008</td>
<td>1</td>
</tr>
<tr>
<td>Kali</td>
<td>K</td>
<td>39,09</td>
<td>39</td>
</tr>
<tr>
<td>Kẽm</td>
<td>Zn</td>
<td>65,38</td>
<td>65</td>
</tr>
<tr>
<td>Lưu huỳnh</td>
<td>S</td>
<td>32,06</td>
<td>32</td>
</tr>
<tr>
<td>Magie</td>
<td>Mg</td>
<td>24,32</td>
<td>24</td>
</tr>
<tr>
<td>Mangan</td>
<td>Mn</td>
<td>54,93</td>
<td>55</td>
</tr>
<tr>
<td>Molipden</td>
<td>Mo</td>
<td>95,95</td>
<td>96</td>
</tr>
<tr>
<td>Natri</td>
<td>Na</td>
<td>22,99</td>
<td>23</td>
</tr>
<tr>
<td>Nitơ</td>
<td>N</td>
<td>14,00</td>
<td>14</td>
</tr>
<tr>
<td>Oxy</td>
<td>O</td>
<td>16,00</td>
<td>16</td>
</tr>
<tr>
<td>Phốt pho</td>
<td>P</td>
<td>30,98</td>
<td>31</td>
</tr>
<tr>
<td>Sắt</td>
<td>Fe</td>
<td>55,84</td>
<td>56</td>
</tr>
</tbody>
</table>

- Các muối đều gồm nhiều phân tử do các nguyên tử tạo ra. Ví dụ: kali sunfat là một trong các muối cung cấp K trong dung dịch dinh dưỡng. Mỗi phân tử muối này bao gồm: 2 nguyên tử K, 1 nguyên tử S và 4 nguyên tử O, công thức phân tử của nó là K₂SO₄. Khối lượng phân tử được tính bằng tổng khối lượng của các nguyên tử thành phần: \(M_{K₂SO₄} = 2 \times 39 + 32 + 16 \times 4 = 174 \).

- Như vậy, biết công thức phân tử ta có thể biết được khối lượng phân tử và do đó có thể tính được lượng muối cần thiết cho dung dịch dinh dưỡng.
- Nồng độ muối trong nước có thể được biểu diễn bằng nhiều cách: hàng bằng ppm, mg/l, g/l… Trong đó đơn vị thường được sử dụng trong pha chế dung dịch thủy canh là ppm. Phần triệu (ppm) chính là số gam muối có trong một triệu gam nước; do 1 cm³ nước nặng 1g nên tính theo một triệu cm³ nước (1000 lít). Vi dụ: trong công thức dinh dưỡng nitrơ 180 ppm có nghĩa là trong 1000 lít nước có 180 gam nitrơ (ở dạng muối) hòa tan trong đó. Để quy đổi ra khối lượng muối cần sử dụng, đầu tiên ta chọn muối để cung cấp N, sau đó thực hiện các bước tính toán. Vi dụ: chọn amoni sunfat tiến hành tính toán như sau:

+ Trước hết viết CTPT: \((\text{NH}_4)_2\text{SO}_4\)
+ Tính khối lượng phân tử: \(M_{(\text{NH}_4)_2\text{SO}_4} = 2.14 + 8.1 + 32 + 4.16 = 132\)
+ Tính % khối lượng N trong phân tử: \(\frac{2.14}{132} \cdot 100 = 21,3\%\)

+ Tự tê phân thẩm này tính ra nồng độ muối theo yêu cầu để có được 180 ppm nitơ: \(\frac{180}{21,3} \cdot 100 = 845\text{ppm}\)

Đó cũng chính là lượng amoni sunfat tính bằng gam cần được hòa tan trong 1000 lít nước để cung cấp 180g nitơ (180 ppm).

- Bốn bước cơ bản trên đây có thể áp dụng để tính toán lượng muối bắt ki yêu cầu đối với một nguyên tố bất kì. Vi dụ: amoni dihidrophotphat cung cấp cả 2 nguyên tố P và N trong công thức dinh dưỡng. Cần lưu ý một số muối có dạng khác nhau, ví dụ magie sunfat thường được sử dụng dưới dạng MgSO₄·7H₂O, nhưng cũng có thể dùng muối MgSO₄. Trước khi tính tổng nồng độ ppm của nguyên tố phải biết chính xác CTPT của muối dự định sử dụng.

- Khó có thể tìm ra một công thức dinh dưỡng lí tưởng bởi vì có nhiều tài liệu đưa ra những công thức khác nhau, vì thế người ta chỉ có thể biết được giới hạn tối ưu của mỗi nguyên tố dinh dưỡng theo bảng sau:

Bảng 1.5. Giới hạn nồng độ một số chất trong phân bón

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Thấp nhất (ppm)</th>
<th>Cao nhất (ppm)</th>
<th>Tối ưu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrơ</td>
<td>90</td>
<td>200</td>
<td>140</td>
</tr>
<tr>
<td>Photpho</td>
<td>30</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Kali</td>
<td>200</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>Canxi</td>
<td>120</td>
<td>240</td>
<td>150</td>
</tr>
<tr>
<td>Magie</td>
<td>40</td>
<td>60</td>
<td>50</td>
</tr>
</tbody>
</table>

- Ngoài ra còn 2 yếu tố khác đồng vai trò quan trọng để quyết định dùng công thức nào.
 + Trước hết là điều kiện khí hậu, tỉ lệ K/N là quan trọng nhất bởi vì nó thay đổi theo khí hậu. Vào mùa hè trời nắng ngày dài, cây cần nhiều N và ít K hơn so với mùa đông trời tối ngày ngắn. Trong thực tế nói chung vào mùa đông tỉ lệ K/N thường gấp đôi để cây phát triển cũng cấp trong mùa đông.
 + Trong goc photphat (PO₄³⁻) có chứa P. Do có nhiều có nhiều loại muối photphat, đặc biệt là các muối photphat của những nguyên tố vi lượng tạo kết tủa ở nóng độ cao vi vậy cần phải duy trì nóng độ P cũng thấp càng tốt kết hợp với việc cung cấp hợp lý.
 - Ngoài những nguyên tố vi lượng là Fe, Mn, Cu, B, Zn và Mo còn có những nguyên tố khác như Al, Cl, Si, Na cũng là những vi lượng cần cho cây. Nhưng
phải có những quy định chung về mức độ sử dụng vi lượng, vi dư lượng của chúng có thể gây độc cho cây trồng. Do vậy cần phải kiểm soát chất che nồng độ vi lượng trong dung dịch dinh dưỡng. Bảng 1.5 đưa ra mức tối thiểu, tối đa và tối ưu nồng độ các nguyên tố vi lượng trong dung dịch dinh dưỡng.

Bảng 1.6. Quy định nồng độ vi lượng trong dung dịch dinh dưỡng.

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Tối thiểu (ppm)</th>
<th>Tối đa (ppm)</th>
<th>Tối ưu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sắt (Fe)</td>
<td>2,0</td>
<td>5,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Mangan (Mn)</td>
<td>0,1</td>
<td>1,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Đồng (Cu)</td>
<td>0,01</td>
<td>0,1</td>
<td>0,05</td>
</tr>
<tr>
<td>Bo (B)</td>
<td>0,1</td>
<td>1,0</td>
<td>0,5</td>
</tr>
<tr>
<td>Kẽm (Zn)</td>
<td>0,02</td>
<td>0,2</td>
<td>0,1</td>
</tr>
<tr>
<td>Molipđen (Mo)</td>
<td>0,01</td>
<td>0,1</td>
<td>0,02</td>
</tr>
</tbody>
</table>

- Vì các nguyên tố vi lượng đối hồi nồng độ nhỏ như vậy nên khi pha trộn hợp chất của chúng vào dung dịch dinh dưỡng sẽ gặp khó khăn cho người không có chuyên môn về hóa học. Nhiều tác giả đề xuất sử dụng pha thành 2 dung dịch: một dung dịch chứa các nguyên tố vi lượng, một dung dịch chứa Fe và các nguyên tố còn lại.
Vi dụ: muốn pha chế 10 lít dung dịch dinh dưỡng cần tiến hành các bước sau:
- Bước 1: Tính toán lượng muối yếu cần để có được lượng nguyên tố vi lượng cần. Giả sử muối mangan sunfat là một trong những muối có thể dùng để cung cấp Mn thì trước tiên phải cân trọng lượng muối này để có được nồng độ Mn là 0,5 ppm.
- Bước 2: tiến hành tính toán
 + CTPT: MnSO₄₄H₂O.
 + Tính khối lượng phân tử: \(M = 55 + 32 + 4.16 + 4.18 = 223 \)
 + Tính % khối lượng Mn trong phân tử: \(\frac{55}{223} \times 100 = 24,7\% \)
Nồng độ muối mangan sunfat ngầm nước yêu cầu để được 0,5 ppm Mn trong dung dịch: \[
\frac{0.5}{24.7} \times 100 = 2 \text{ ppm}
\]

Nói cách khác là hòa tan 2g MnSO₄.4H₂O trong một lít nước cùng với 1 số muối khác có tỉ lệ tương ứng. Sau đó lấy 10ml dung dịch này pha loãng với nước đến thể tích 10 lít ta được dung dịch dinh dưỡng cuối cùng có chứa Mn 0,5 ppm. Với các muối khác ta cung thực hiện các tính toán tương tự như ở bảng 1.6.

Bảng 1.7. Lượng muối các nguyên tố với lượng để pha 1 lít dung dịch cốt.

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Nồng độ nguyên tố</th>
<th>Muối</th>
<th>Phân tử khối</th>
<th>% nguyên tố</th>
<th>Khối lượng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>4,0</td>
<td>FeSO₄.7H₂O</td>
<td>278</td>
<td>20,1</td>
<td>20</td>
</tr>
<tr>
<td>Mn</td>
<td>0,5</td>
<td>MnSO₄.4H₂O</td>
<td>223</td>
<td>24,7</td>
<td>2</td>
</tr>
<tr>
<td>Cu</td>
<td>0,05</td>
<td>CuSO₄.5H₂O</td>
<td>250</td>
<td>25,6</td>
<td>0,20</td>
</tr>
<tr>
<td>Zn</td>
<td>0,1</td>
<td>ZnSO₄.7H₂O</td>
<td>287</td>
<td>22,6</td>
<td>0,44</td>
</tr>
<tr>
<td>B</td>
<td>0,5</td>
<td>H₃BO₃</td>
<td>62</td>
<td>17,7</td>
<td>2,8</td>
</tr>
<tr>
<td>Mo</td>
<td>0,02</td>
<td>Na₂MoO₄.2H₂O</td>
<td>242</td>
<td>39,7</td>
<td>0,05</td>
</tr>
</tbody>
</table>

- Lưu ý: Người ta thường pha Fe thành dạng chelat Fe để hạn chế sự mất Fe, dùng chelat thường được sử dụng trong dung dịch thủy canh là Fe-EDTA.
- Đối với các nguyên tố đa lượng ta cũng làm các tính toán tương tự.

Bảng 1.8. Một số muối đa lượng được dùng trong thủy canh.

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Muối</th>
<th>CTPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Kali nitrat</td>
<td>KNO₃</td>
</tr>
<tr>
<td></td>
<td>Canxi nitrat</td>
<td>Ca(NO₃)₂</td>
</tr>
<tr>
<td></td>
<td>Natri nitrat</td>
<td>NaNO₃</td>
</tr>
<tr>
<td></td>
<td>Amoni sunfat</td>
<td>(NH₄)₂SO₄</td>
</tr>
<tr>
<td></td>
<td>Amoni nitrat</td>
<td>NH₄NO₃</td>
</tr>
<tr>
<td></td>
<td>Amoni dihidrosunfat</td>
<td>NH₄H₂PO₄</td>
</tr>
<tr>
<td></td>
<td>Diamoni hidrosunfat</td>
<td>(NH₄)₂PO₄</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Ure</td>
<td>CO(NH₂)₂</td>
</tr>
<tr>
<td>K</td>
<td>Kali nitrat</td>
<td>KNO₃</td>
</tr>
<tr>
<td></td>
<td>Kali sunfat</td>
<td>K₂SO₄</td>
</tr>
<tr>
<td>Ca</td>
<td>Canxi nitrat</td>
<td>Ca(NO₃)₂</td>
</tr>
<tr>
<td></td>
<td>Canxi sunfat</td>
<td>CaSO₄.2H₂O</td>
</tr>
<tr>
<td>P</td>
<td>Kali dihidrosunfat</td>
<td>KH₂PO₄</td>
</tr>
<tr>
<td></td>
<td>Axit photphoric</td>
<td>H₃PO₄</td>
</tr>
<tr>
<td>Mg</td>
<td>Magie sunfat</td>
<td>MgSO₄.7H₂O</td>
</tr>
<tr>
<td></td>
<td>Magie nitrat</td>
<td>Mg(NO₃)₂.6H₂O</td>
</tr>
</tbody>
</table>

1.7. Giới thiệu về một số loại rau ăn lá và rau ăn quả

Theo tác giả Tạ Thị Kim Cúc [3]:

1.7.1. Cải xanh

- Cây cải xanh có tên khoa học là Brassica juncea, thuộc họ cải Brassicaceae, có nguồn gốc từ Trung Quốc, nó được trồng ở nước này từ thế kỷ thứ 5 sau công nguyên và sau đó cải xanh được trồng rộng rãi khắp thế giới.

Yếu cầu ngoại cảnh:

- Cải xanh ưa thích khí hậu ấm hòa, mát lạnh. Hầu hết các giống cải xanh đều sinh trưởng tốt ở nhiệt độ 18 - 22 °C. Các giống cải xanh ưa thích ánh sáng tần xạ corng đỗ vừa phải, có khả năng chịu bóng râm hơn các cây rau ăn quả. Ánh sáng mạnh cũng với nhiệt độ không khí cao sẽ làm cho cây cạn cố, dẫn đến năng suất và chất lượng giảm.
- Các giống cải xanh có hệ rễ cần, số lá trên cây nhiều và lớn vì vậy yêu cầu độ ẩm đất và độ ẩm không khí cao để sinh trưởng. Độ ẩm đất 80 – 85 %, độ ẩm không khí 80 – 90 % có lợi cho sự sinh trưởng thanh lá.
- Cải có thể sinh trưởng trên nhiều loại đất, nhưng tốt nhất nên gieo trồng trên đất màu mỡ, toị xốp, nê, độ pH từ 5,5 - 7,0.
1.7.2. Cải ngọt
- Cải ngọt có tên khoa học là Brassica integrifolia, thuộc họ cải Brassicaceae.

Yêu cầu ngoài cảnh
- Thích hợp với đất có độ ẩm từ 70 – 90 %.
- Có thể trồng trên nhiều loại đất khác nhau, phát triển tốt trên đất cát pha hoặc thit nhẹ cấu trúc tới xốp, già mòn, dễ thoát nước, pH 5,5 - 6,5.

1.7.3. Cải thìa
- Cải thìa (cải bẹ trăng) có tên khoa học là Brassica chinensis, thuộc họ cải Brassica, có nguồn gốc từ Trung Quốc.

Yêu cầu ngoài cảnh:
- Sinh trưởng tốt trong khoảng nhiệt độ 12 – 18 °C.
- Thích hợp với đất trồng có độ ẩm 80 - 90 %.
- Cải thìa có thể trồng được trên nhiều loại đất, từ đất cát đến đất thit.

1.7.4. Xà lách
- Xà lách có tên khoa học là Lactuca sativa L, thuộc họ cúc và chi Luctuca, là loại rau ăn sống phổ biến ở nhiều nước.

Yêu cầu ngoài cảnh:
- Sinh trưởng phát triển tốt trong khoảng nhiệt độ 8 – 25 °C, thích hợp nhất là 13 – 16 °C. Đối với xà lách ảnh sáng thích hợp là ảnh sáng vùng cảnh nhiệt độ khoảng 17.000 lux và thời gian chiếu sáng 16 giờ/ngày sẽ cuộn bắp chất hon (đối với xà lách cuộn).
- Yêu cầu độ ẩm cao, thích hợp trong khoảng 70 – 80 %.
- Xà lách ăn nóng, không kén đất, nhưng yêu cầu đất tốt xốp, thoát nước tốt, pH từ 5,8 - 6,6.
1.7.5. Rau dền

- Rau dền có tên khoa học là Amaranthus, có nguồn gốc từ Trung Mỹ và Nam Mỹ.

Yêu cầu ngoài cánh:

- Rau dền ưa thích khí hậu ẩm áp, ơi hòa, có thể chịu nóng nhưng không chịu được rét. Cường độ ánh sáng vừa phải sẽ thúc đẩy sự sinh trưởng thân lá, có khả năng chịu bóng râm.
- Cây có bộ rễ khỏe, có khả năng chịu hạn, độ ẩm đất thích hợp 70 – 80 %.
- Rau dền có thể sinh trưởng trên nhiều loại đất, tuy vậy nền trồng ở những nơi có đất canh tácoday, tôi xôp, có độ trong phạm vi 5,5 - 7,0.

1.7.6. Rau mùi

- Rau mùi có tên khoa học là Ipomoea Aquatica Forsk, thuộc họ khoai lang, là loại cây trồng cho năng suất cao, thu hoạch nhiều lúa trong một vụ.

Yêu cầu ngoài cánh:

- Rau mùi cần nhiều nước trong suốt thời gian sinh trưởng. Nếu thiếu nước cây cần cói, lông ngắn, lá nhỏ dần đến nang suất và chất lượng giảm.
- Rau mùi có thể sinh trưởng trên nhiều loại đất: đất sét, đất cát, đất cát pha, đất ẩm giàu mún hoặc đất được bon phần hữu cơ, có độ pH 5,3 - 6,0.

1.7.7. Húng quế

- Húng quế có tên khoa học là Ocimum basilicum, thuộc họ Bạc hà (Lamiaceae), là một loại cây trồng đa niên.

Yêu cầu ngoại cánh:

- Là loại cây rua sáng, thích hợp với ánh sáng chiếu trực tiếp. Cây phát triển tốt trong khoảng nhiệt độ từ 25 – 30 °C.
- Thích hợp với đất có độ ẩm 70 – 90 %.
- Phát triển tốt trên đất tăng dày, toși xốp.

1.7.8. Mồng tơi
- Mồng tơi có tên khoa học là Basella rubra, thuộc họ mồng tơi.

Yêu cầu ngoại cảnh:
- Mồng tơi là loài cây trồng ưa sáng, thích hợp với khoảng nhiệt độ 25 – 30 °C.
- Cây thích hợp với đất có độ ẩm cao, độ ẩm có tác dụng kích thích cây ra hoa.
- Mồng tơi thích hợp với đất thrente, thrente trung bình, đặc biệt là đất cát pha có độ pH từ 6,0 - 6,7.

1.7.9. Dưa leo
- Dưa leo (dưa chuột) có tên khoa học là Cucumis sativus, là một loại cây trồng phổ biến trong họ bầu bí Cucurbitaceae, là loại rau ăn quả quan trọng trên Thế giới.

Yêu cầu ngoại cảnh
- Cây cần nhiều nước trong suốt thời gian sinh trưởng, nước giúp quá phát triển căng mọng.
- Dưa leo ưa thích đất dai màu mỡ, nhẹ, toși xốp, pH từ 5,5 - 6,8 cũng có thể sinh trưởng trong đất hơi kiềm (pH = 7,5).

1.8. Thực trạng việc áp dụng mô hình thủy canh tại hộ gia đình

Trong phạm vi của đề tài, tác giả đã thực hiện một cuộc khảo sát về thực trạng trồng rau bằng phương pháp thủy canh từ 91 thành viên trên diện dân Rau sạch (http://rausach.com.vn/) bằng phiếu khảo sát trực tuyến (Phiếu khảo sát được tạo bởi chương trình Google Drive).
Nội dung khảo sát bao gồm một số câu hỏi liên quan đến mô hình thủy canh được áp dụng, cách thức chuẩn bị dụng dịch dinh dưỡng, loại rau được áp dụng trong thủy canh và nhận xét về hiệu quả của phương pháp thủy canh hiện đang áp dụng.

- Loại hình thủy canh được áp dụng
 - Trong cuộc khảo sát: 69,2% thành viên áp dụng mô hình thủy canh tĩnh và 30,8% thành viên áp dụng mô hình thủy canh hồi lưu, không có thành viên nào áp dụng mô hình khí canh hay mô hình khác.

Hình 1.5. Biểu đồ về tần phổ biến của mô hình thủy canh tĩnh

- Số liệu trên cho thấy đa số các thành viên chọn mô hình thủy canh tĩnh vì tính đơn giản, phù hợp với quy mô hộ gia đình của nó.
 - Các loại rau trồng thủy canh:
 - Kết quả khảo sát cho thấy loại rau chung yếu được trồng bằng phương pháp này là rau muống, sau đó là rau cải và các loại rau khác như xà lách, mống to, diệp cát, rau dền, cà chua, dưa leo.
 - Cách thức chuẩn bị dụng dịch dinh dưỡng
 - Với câu hỏi “Anh (chị) chuẩn bị dụng dịch dinh dưỡng như thế nào?” tác giả thu được kết quả sau: 61,5% thành viên lựa chọn cách mua dụng dịch dinh
dường có sẵn về pha theo hướng dẫn và 38,5% còn lại tự mua hóa chất về pha ché dụng dịch dinh dưỡng.

![Hình 1.6. Biểu đồ về phương pháp chuẩn bị dụng dịch dinh dưỡng](image)

- Khi hỏi thêm về cách tính toán lượng hóa chất để pha chế đúng dịch dinh dưỡng trong số 35 thành viên chọn cách tự pha chế có: 90% sử dụng các công thức có sẵn các loại hóa chất và khối lượng cụ thể và 10% sử dụng chương trình tính toán thủy canh trên trang web http://nonghoc.com để tính chuẩn pha chế. Mặt khác, trong số 56 thành viên lựa chọn mua đúng dịch dinh dưỡng có sẵn khi được hỏi “Anh (chị) có muốn tự mình tính toán và pha chế đúng dịch dinh dưỡng nếu có được sự hướng dẫn cụ thể hay không?” thì có 87,5% trả lời “có” và 12,5% trả lời “không”.

- Từ kết quả khảo sát cho thấy đa số người trồng thủy canh chưa thể chú trọng trong việc pha chế đúng dịch dinh dưỡng mặc dù đa số họ có nhu cầu này.
 - Đánh giá hiệu quả của phương pháp thủy canh

- Với câu hỏi “Ý kiến của anh (chị) về hiệu quả của việc trồng rau bằng phương pháp thủy canh?” có 76,9% ý kiến đánh giá phương pháp tốt đem lại hiệu quả cao hơn thủ canh, rau sạch, ít sâu bệnh.

- Một số ý kiến còn lại cho rằng đây là “phương pháp thú vị, có thể giải trí sau giờ làm việc”; “cần một số kiến thức chuyên môn, khó khăn ở giai đoạn canh
chính xác hóa chất”; “để thực hiện, tiết kiệm sức lao động”, “chi mang tính giải trí, khó kiểm lỏi”,…
CHƯƠNG 2. GIỚI THIỆU PHẦN MỀM HYDROBUDDY V1.50 VÀ ỨNG DỤNG TRONG PHA CHẾ DUNG DỊCH THỦY CANH.

2.1. Giới thiệu phần mềm hydrobuddy v1.50

Hydrobuddy là một chương trình miễn phí dùng để thực hiện các tính toán cho dung dịch dinh dưỡng đúng trong nuôi trồng thủy canh và trong lĩnh vực nông nghiệp nói chung.

Tác giả của chương trình này là nhà hóa học Daniel Fernandez. Ông đã tốt nghiệp thạc sĩ hóa học chuyên ngành công nghệ nano tại trường đại học Rovira i Virgili at Tarragona (Tây Ban Nha), hiện tại đang làm tiến sĩ tại viện Catalá d'Investigació Química (ICIQ).

Một số chức năng của phần mềm này:

- Tính khối lượng các hóa chất cần dùng để pha chế dung dịch dinh dưỡng theo các công thức. Chương trình sẽ tự động xuất kết quả phù hợp nhất với nồng độ các nguyên tố trong công thức yêu cầu.
- Cho phép bổ sung các hóa chất vào dữ liều, chọn cách thức pha chế dung dịch dinh dưỡng.
- Chương trình sử dụng nhiều hệ đơn vị đo lường khác nhau tùy nhu cầu người sử dụng.
- Tìm ra công thức dinh dưỡng theo nồng độ ppm các nguyên tố từ thành phần của các dung dịch dinh dưỡng trên thị trường.
- Dựa thêm hàm lượng các nguyên tố có trong nước vào việc tính toán.
- Cho thấy những sai số dụng cụ có thể mắc phải.
- Tính toán kinh phí để mua hóa chất.
- Dự báo về độ dán điện của dung dịch.
- Ghi nhận và theo dõi sự thay đổi pH và độ dán điện của dung dịch (EC) trong quá trình sử dụng dung dịch.
2.2. Hướng dẫn sử dụng phần mềm Hydrobuddy v1.50

2.2.1. Cài đặt phần mềm

- Tải phần mềm về bằng chương trình Internet download manager.
- Vào thư mục chứa tập tin “HydroBuddy-1.50-Setup” vừa tải về.
- Nhấp đúp vào tập tin để bắt đầu cài đặt chương trình, trên màn hình sẽ lần lượt xuất hiện các cửa sổ sau:
+ Chọn “Next” để tiếp tục

![Image](image1)

+ Nhập vào “Select Folder” để chọn nơi lưu trữ chương trình cài đặt. Sau đó chọn “Next” để tiếp tục.

![Image](image2)

+ Chọn “Begin Installation” chương trình sẽ tự động được cài đặt.

2.2.2. Hướng dẫn sử dụng phần mềm

Vào “All programs” chọn và nhấp đúp vào chương trình “HydroBuddy” vừa cài đặt để bắt đầu sử dụng phần mềm.

Cửa sổ xuất hiện là trang giới thiệu về phần mềm của tác giả Daniel Fernandez. Phía trên cùng là dãy 2 thẻ lệnh nằm ngang, dãy thẻ lệnh bên trên dùng để làm việc với chương trình, dãy thẻ lệnh bên dưới là những hướng dẫn sử dụng chương trình.
Trước tiên hãy tìm hiểu thể lệんでいる đây qua các hình ảnh dưới đây để hiểu rõ cách sử dụng chương trình
CHỌN HÓA CHẤT

Nhấp vào đây để bắt đầu chọn hóa chất

Các hóa chất đã có sẵn trong

Nhấp chuột vào chất muốn sử dụng và chọn "Add"

Nhấp vào đây để thêm vào hóa chất mới hoặc loại bỏ tất cả các chất trong bảng bên trái

2 mặt này dùng để thay đổi các giá trị của một số mẫu có sẵn ở bảng bên phải

Khi nhấp vào mặt này bạn có thể thay đổi các giá trị của một số mẫu có sẵn ở bảng bên phải

MỘT SÓ ĐẶC TÍNH CỦA HÓA CHẤT SỬ DỤNG

Tên của hóa chất được chọn

Công thức phân tử của hợp chất

Cho biết hàm lượng K²⁺ và P³⁻ trong mẫu

Cho biết thành phần phân tử của các nguyên tố trong hợp chất

Hàn có thể yêu cầu tính chất ảnh hưởng của K⁺ và P⁻ theo trục x=O và P-O,

2 mặt này dùng để lưu lại những điều kiện ban đầu đã thiết yếu của bảng trên để lưu có sẵn

Cho biết giá của một kg hóa chất, bạn có thể thay đổi pha vào đúng để:

Số chịu độ tải lớn (một chỉ tiêu cho biết mức độ

Cửa sổ này xuất hiện khi bạn thêm

Cho biết hóa chất mà bạn chọn được pha vào đúng

Cửa sổ này xuất hiện khi bạn thêm

Nếu bạn thấy số 0 nghĩa là chất

Hàn nên nêu đúng hóa chất tính kết

(100%) hoặc những chất

Bắt rò do tính kết

30
CÁC THÔNG SỐ KỸ THUẬT

Nhập vào dữ liệu nhập vào giá trị trên đây xác định của dung từ do khối lượng và thể tích mà bạn sử dụng. Các giá trị này giúp phân明细 từng ra sai số đúng cụ trong kết quả của bạn.

Đặt thể tích đúng định dung dịch đường hay thể tích đúng thích hợp của cần phẩm. Bạn có thể chọn đơn vị do thể tích theo ý muốn.

Chọn đơn vị do khối lượng

CHỌN SỨC MÁY

Cơ sở lưu lượng

KẾT QUẢ

Cột này liệt kê tên các hóa chất bạn dùng

Tính toán phần tử tương ứng

Dung từ ppm của các thành phần theo khối lượng tính ra trên

Kích thước các nguyên tố cơ bản trong dung dịch định lượng

Phân trăm độ sai lệch các dung từ ppm so với công thức ban đầu

Hướng dẫn cách phải dùng đường tính để gọi theo đúng tỷ lệ

Số lượng molecules phân tử (nếu bạn nhập dữ liệu dùng tính giữa các cơ sở lượng hóa)

Sai số do các dung cụ cần khối lượng hoặc do thể tích của đơn vị

EC=1.7 mS/cm

Duyệt dự dẫn cụ định của dung dịch định lượng

Any observations about the calculations will be posted here.
Trong thẻ “Correct Preparation” tác giả nêu ra một số lưu ý: Kết quả tính toán mà bạn thu được sau khi sử dụng phần mềm này sẽ trở nên vô ích nếu các thao tác pha chế không được thực hiện đúng. Dưới đây là một số nguyên tắc mà bạn cần tuân thủ khi pha chế dung dịch định lượng:

- Nếu bạn muốn pha ra dung dịch để trực tiếp sử dụng (tức là không đi qua dụng dịch có t), đầu tiên cho vào thùng chứa dung dịch của bạn một nửa thể tích nước của thể tích dung dịch dự định điều chế. Sau đó, lần lượt hòa tan từng muối theo đúng khối lượng đã tính (để muối tan hoàn toàn rồi mới cho muối tiếp theo) sau đó thêm nước vào đến thể tích dự định để tránh sai số do hiểu 误 thể tích.

- Trong tự khi pha chế dung dịch gốc, bạn hòa tan các muối vào 1 thể tích nước (nên dùng nước 40-50 °C để tăng độ tan của muối) bằng khoảng 80% thể tích dung dịch gốc cần pha, sau đó thêm vào nước vào đến thể tích mong muốn để tránh xảy ra sai số. Ví dụ: bạn muốn pha 100 lít dung dịch cốt, nếu bạn thêm vào 80 lít nước và sau khi hòa tan các muối thể tích tăng lên 90 lít chứ không...
còn là 80 lít ban đầu nữa. Do đó, bạn chỉ cần thêm vào 10 lít nước thay vì 20 lít như bạn nghĩ.

- Sử dụng nước được xử lý bằng công nghệ thẩm thấu ngược để pha chế dung dịch gốc. Bạn nên sử dụng với nước có khóa để tránh phiên phủ khi bưng bê một thể tích lớn.

- Khi pha chế dung dịch dinh dưỡng sử dụng từ dung dịch gốc luôn cho dung dịch gốc vào một thể tích nước bằng một nửa thể tích dung dịch cần dùng, sau đó thêm nước vào đến thể tích mong muốn. Lưu ý, sau mỗi lần thêm dung dịch gốc (A và B) cần khuấy đều dung dịch trong một vài phút.

- Không bao giờ trộn chung dung dịch gốc A và B vì sẽ tạo ra các muối kết tủa như canxi sulfat, canxi photphat,…Khi đó, dung dịch dinh dưỡng không thể sử dụng được.

2.2.3. Sử dụng phần mềm để tính lượng hóa chất cần dùng pha chế:

Để thực hiện việc tính toán khối lượng các hóa chất cần dùng để pha chế dung dịch thủy canh từ công thức dinh dưỡng có sẵn cần thực hiện lặp lượt các bước sau:
• Bước 1: Nhập vào thẻ “Main Page” màn hình sẽ hiện ra cửa sổ dưới đây:

- Tại cột “Target Conc.(ppm)”: Nhập vào giá trị nồng độ các nguyên tố (trong ứng với cột “Element”) trong công thức dinh dưỡng có sẵn. Hoặc có thể chọn các công thức dinh dưỡng có sẵn trong dữ liệu của chương trình tại “Select formulation from DB”.

- Chọn cách pha chế đúng dịch tại “Solution Preparation type”:
 + Nhập chọn “Concentrated A+B Solutions” nếu muốn pha thành 2 dung dịch gốc A và B. Trong khung “Concentrated Factor” bạn dưới nhập vào hệ số pha loãng. Tại phần “Stock solution volume” (chi xuất hiện khi chọn “Concentrated A+B Solutions”) nhập vào thể tích dung dịch gốc cần pha chế.
- Bước 2: Nhập chọn “Substance Selection” để chọn hóa chất

![Image of Substance Selection]

- Nhập chọn tên hóa chất ở danh mục bên trái rồi chọn “Add” để thêm vào danh mục hóa chất sử dụng ở phía bên phải.
- Nhập chọn tên hóa chất ở danh mục bên phải rồi chọn “Delete” loại bỏ chất đó ra khỏi danh mục hóa chất sử dụng.
- Thêm chất mới không có trong danh mục bằng “Add Custom”.
- Sau khi lựa chọn xong dồng cửa sổ này quay trở về trang “Main Page”

- Bước 3: Nhập chọn “Carry Out Calculation” để chương trình xuất ra kết quả

- Chọn thẻ “Results” để xem kết quả.
- Bảng 1 thể hiện các hóa chất đã được chọn cùng với khối lượng tương ứng cần sử dụng để pha chế dung dịch theo yêu cầu.
- Bảng 2 thể hiện sai số về nồng độ các nguyên tố giữa kết quả với công thức ban đầu.
- Nếu muốn xuất kết quả dưới dạng file “.Csv” nhập chọn “Export To Csv”. Khi đó bạn có thể dễ dàng xem và chia sẻ kết quả bằng chương trình Excel.
Sau khi hoàn thành các tính toán với phần mềm Hydrobuddy bạn có thể bắt tay ngay vào việc cân hóa chất và pha chế dung dịch dinh dưỡng.

2.3. Hướng dẫn pha chế dung dịch dinh dưỡng:

Ví dụ: Pha chế 2 lít dung dịch sóc (1 lít dd A + 1 lít dd B) theo công thức rau ăn lá chung của Howard Resh.

2.3.1. Chuẩn bị hóa chất và dụng cụ

- Hóa chất:
 - Ca(NO₃)₂.4H₂O; KNO₃, Fe₂(SO₄)₃, Na₂EDTA.2H₂O, MgSO₄.7H₂O; MnSO₄.H₂O; H₃BO₃; CuSO₄.5H₂O; ZnSO₄.2H₂O; KH₂PO₄; (NH₄)₂MoO₄; (NH₄)₂SO₄ (Sử dụng cân 3 số thể cân chính xác khối lượng các hóa chất theo kết quả đã tính được bằng phần mềm HydroBuddy).
 - Nước carácter 40-50 °C

- Dung cụ: Một số dụng cụ cần thiết
- 2 bình định mức 1 lít, 2 cốc thủy tinh 200ml, 2 cốc thủy tinh 100ml, đũa thủy tinh, chai đựng dung dịch, phủ.

2.3.2. Pha chế dung dịch dinh dưỡng

- Dung dịch gốc A:
 - Dung dịch A gồm các chất: Fe(EDTA) 3,077 g; Ca(NO₃)₂.4H₂O 107,347 g; KNO₃ 35,288 g.
 - Pha chế phức Fe(EDTA): hòa tan 3,119 g Na₂EDTA.2H₂O và 1,677 g Fe₂(SO₄)₃ vào 2 cốc thủy tinh khác nhau sau đó trộn chung dung dịch trong 2 cốc khuấy đều đến khi dung dịch chuyển sang trong và có màu vàng sẫm thì dừng lại và rót dd vào bình định mức.
 - Lần lượt hòa tan từng muối cát bằng nước cất (40 - 50 °C) trong các thủy tinh và cho vào bình định mức.
 - Dùng nước cát định mức đến vạch, sau đó rót dd vào bình nhựa chứa dd gốc A.
 - Dung dịch gốc B:
 - Dung dịch B gồm các chất: MgSO₄.7H₂O 45,639 g; MnSO₄.H₂O 0,154 g; H₃BO₃ 0,286 g; CuSO₄.5H₂O 0,039 g; ZnSO₄.2H₂O 0,03 g; KH₂PO₄ 24,198 g; (NH₄)₂MoO₄ 0,01g; (NH₄)₂SO₄ 7,086 g.
 - Lần lượt hòa tan từng muối bằng nước cát (40 - 50 °C) trong các thủy tinh và cho vào bình định mức.
 - Dùng nước cát định mức đến vạch, sau đó rót vào bình nhựa chứa dung dịch gốc B.
 - Pha chế dung dịch con từ dung dịch gốc:
 - Trong thể “Results” chương trình sẽ nêu hướng dẫn cách pha chế dung dịch con từ dung dịch gốc theo hệ số pha loãng.

Ví dụ: Khi bạn chọn pha chế 1 lít dd gốc A và 1 lít dd gốc B với hệ số pha loãng là 100 thì chương trình sẽ gợi ý cho bạn pha 10 ml dd gốc A và 10 ml dd vào nước để được 1 lít dd dinh dưỡng con để trồng thủy canh. Điều đó có nghĩa là muốn có 10 lít dd dinh dưỡng để trồng thủy canh bạn cần phải cho vào thủy canh 9,8 lít nước sau đó thêm vào 100 ml dd gốc A và 100 ml dd gốc B.
CHƯƠNG 3. QUY TRÌNH TRỒNG RAU SẠCH BẰNG PHƯƠNG PHÁP THỦY CANH TĨNH QUÝ MÔ HỘ GIA ĐÌNH

3.1. Chuẩn bị bộ dụng cụ thủy canh

3.1.1. Vật liệu, dụng cụ

3.1.1.1. Thùng xốp

- Có kích thước thay đổi tùy theo từng loại cây trồng, thường có chiều dài 50-60cm, rộng 40cm, cao 30cm.
- Ngoài thùng xốp có thể sử dụng các thùng nhựa hoặc bê xỉ măng. Tuy nhiên, thùng xốp có tác dụng giữ cho dung dịch nuôi cây không bị thay đổi về nhiệt độ gây sốc cho cây do độ thích hợp với điều kiện khí hậu ở nước ta.
- Phủ một tấm nilon đen bao bọc phía bên trong thùng xốp để tránh rò rỉ dung dịch và hạn chế ánh sáng đi vào dung dịch. Độ sâu của thùng khoảng 25 – 30cm để cung cấp đủ dung dịch dinh dưỡng cũng như không gian bên trong dung dịch để rễ hô hấp.
- Trên nắp thùng xốp khoan nhiều lỗ có kích thước phù hợp với rọ nhựa (hoặc ly nhựa được đục lỗ), số lỗ và khoảng cách giữa các lỗ tùy theo loại cây trồng.

3.1.1.2. Khung:

- Dựa vào diện tích có thể sử dụng và số lượng thùng xốp sử dụng thiết kế bộ khung phù hợp. Khung phải có mái che bằng vật liệu trong suốt để nước mưa không xâm nhập vào dung dịch dinh dưỡng mà vẫn đảm bảo đủ ánh sáng cho cây trồng. Sau đó, sử dụng lưới nilon bao bọc xung quanh dàn nhưng để tránh côn trùng, chim chóc phá hoại và đặt ở vị trí nhiều ánh sáng nhất.

3.1.1.3. Ly nhựa hoặc rọ nhựa

- Có thể dùng các rọ chuyển dụng trong nuôi thủy canh hoặc sử dụng các ly nhựa có kích thước thích hợp để trồng những loại cây khác nhau. Đối với ly phải tiến hành đục các lỗ nhỏ ở đáy là thành ly phía dưới để rễ dâm ra hút chất
dinh dưỡng, có thể dùng mỏ hàn điện hoặc que kim loại đốt nóng để làm việc này.

Vd: khi trồng xà lách, cài thia, húng quế,… nên sử dụng loại rọ nhựa hoặc ly nhựa có đường kính đáy khoảng 3cm, đường kính miệng ly 4-5cm.

3.1.1.4. Giá thể

- Có nhiều chất liệu được sử dụng làm giá thể: xơ dừa, cát, trụ, vermiculite, perlite,… Các giá thể trước khi sử dụng phải được xử lí để đảm bảo không ảnh hưởng tới chất lượng dung dịch dinh dưỡng.

Vi dụ: Xơ dừa phải được ngâm trong nước với 1 ngày đêm, sau đó rửa sạch cho nông nước chảy qua để loại tanin (tanin là 1 thành phần gây hại cho cây, và làm tăng tính axit của môi trường dinh dưỡng).

* Lưu ý: nếu giá thể nhỏ cần sử dụng thêm 1 lớp lót ly nhựa để hạn chế giá thể lọt vào dung dịch.

3.1.2. Chuẩn bị dung dịch dinh dưỡng

- Dung dịch dinh dưỡng có thể mua sẵn trên thị trường hoặc tự pha chế theo các bước được hướng dẫn ở chương II.

3.1.3. Một số thiết bị hỗ trợ:

- Máy súc khí oxy (loại dùng trong nuôi cá kiểng), các thiết bị kiểm soát môi trường dinh dưỡng: bút đo TDS, bút đo pH (hoặc giấy đo pH).

3.2. Chuẩn bị cây con

- Có thể thực hiện theo một trong hai cách sau:

 + Cách 1: cho giá thể vào ly, sau đó gieo trực tiếp hạt giống vào giá thể, tưới nước cho đến khi cây xuất hiện hai lá thật.

 + Cách 2: gieo hạt giống ở ngoài đất hoặc chất nền hữu cơ đến khi cây xuất hiện hai lá thật thì tách ra khỏi môi trường, nhet những rửa sạch bộ rễ sau đó cho vào ly cùng giá thể.
3.3. Pha dung dịch dinh dưỡng từ dung dịch cốt

- Dung dịch cốt (mui trên thì trưởng hoặc tự pha chế) là dung dịch đặc có nồng độ các muối rất cao, do đó cần phải pha loãng theo tỉ lệ quy định để sử dụng trong nuôi trồng thủy canh.

Ví dụ: pha 10 lít dung dịch dinh dưỡng từ dung dịch cốt có hệ số pha loãng là 100, cần dùng 100 ml dung dịch A + 100 ml dung dịch B + 9,8 lít nước.

3.4. Chăm sóc và bổ sung dung dịch dinh dưỡng

- Cho nước vào khoảng 2/3 thùng, sau đó cho dung dịch cốt vào pha theo tỉ lệ.
 Lưu ý: thể tích dung dịch phải đảm bảo chỉ khoảng 1/3 ly nhựa ngập trong nước, phần còn lại là không khí cho rễ hô hấp.

- Cho cây con đạt được mức sinh trưởng theo yêu cầu vào dung dịch dinh dưỡng.
 Đối với con không được gieo trực tiếp trong giá thể thì thời gian đầu cần kết hợp tuổi phun dung dịch do khí dưa từ môi trường ngoài vào giá thể rễ bị tồn thường, khả năng hút dinh dưỡng kém.

- 2-3 ngày cần tiến hành súc khí oxy vào dụng dịch để đảm bảo đủ oxy cho rễ hô hấp.

- Theo dõi thường xuyên mức nước trong thùng xốp, bổ sung thêm dinh dưỡng khi mức dung dịch thấp hơn bơ rễ.

- Dưa vào biểu hiện của cây trồng kết hợp với các thiết bị đo TDS, pH để điều chỉnh dung dịch dinh dưỡng cho phù hợp.

3.5. Thu hoạch

- Khi cây phát triển gần tới mức có thể thu hoạch, khoảng 2 - 3 ngày cuối cùng chấm dinh dưỡng, chỉ chấm thêm nước vào thùng xốp để tránh dư lượng hóa chất trong sản phẩm đặc biệt là dư lượng đảm.

- Sau khi thu hoạch, làm vệ sinh bộ dụng cụ: thùng xốp, ly nhựa sử dụng cho dot gieo trồng sau. Giải thể được tách ra khỏi phân còn lại của cây trồng xử lí lại bằng nước với, rửa sạch và làm khô để tái sử dụng.
CHƯƠNG 4. THỰC NGHIỆM TRONG THỦY CANH TĨNH

4.1. Mục đích thực nghiệm
- Đánh giá tính khả thi và hiệu quả của các công thức pha chế đúng dịch thủy canh trên một số loại rau, quả cụ thể.
 + Khả năng sinh trưởng và phát triển của cây trồng.
 + Kiểm nghiệm các chỉ tiêu hoá sinh của các loại rau đã trồng để chứng minh rau trồng được đảm bảo vệ sinh an toàn thực phẩm.
- Hướng dẫn thao tác pha chế đúng dịch dinh dưỡng và quy trình trồng thủy canh qua các video clip.

4.2. Nội dung thực nghiệm
- Chuẩn bị bộ dụng cụ trồng thủy canh tính
- Pha chế đúng dịch trồng thủy canh được xây dựng từ phần mềm HydroBuddy v1.50
- Tiến hành trồng thủy canh 1 số loại rau, quả: ướm mầm, pha chế cho cây con vào đúng dịch, theo dõi quá trình phát triển, thu hoạch và ghi nhận các kết quả thu được.

4.3. Đổi tương thực nghiệm
- Một số loại rau ăn lá: xà lách, cải thia, cải ngọt, cải bẹ xanh, rau muống, rau đê do, húng quế, mồng tơi.
- Dưa leo.

4.4. Tiến hành thực nghiệm

4.4.1. Chuẩn bị vật liệu và dụng cụ:

4.4.1.1. Khung:
- Lắp đặt bộ khung sắt V lỗ kích thước: 2,5 x 1,5 x 2,3 m, khung được đặt ở vị trí nhiều nắng trên sân thượng.
- Mái che bằng tấm lợp plastic trong suốt, bao xung quanh lười nilon để cách li còn trùm.
4.4.1.2. Bộ thùng xốp thủy canh

- Bộ 15 thùng xốp thủy canh: kích thước 50x35x20 cm
- Mỗi thùng gồm:
 + Đáy thùng: bị kín các lỗ hổng bằng các miếng xốp nhò, phủ kín lớp bên trong bằng tấm nilon đen (loại sử dụng làm màn phủ nông nghiệp) được cố định.
 + Nắp thùng: dùng ống nhựa có đường kính 6,5 cm được 8 lỗ hoặc 4 lỗ (tùy theo loại cây trồng), vừa đủ lọt ly nhựa chứa cây trồng và giả thể.

Hình 4.1. Bộ thùng xốp để trồng thủy canh tĩnh

4.4.1.3. Chuẩn bị nguyên liệu:

- Ly nhựa: đường kính miệng ly 7 cm, đường kính đáy 4 cm. Sử dụng cây kim loại nung nóng dúc các lỗ nhỏ xung quanh 2/3 thành phía đáy ly.

Hình 4.2. Đúc lỗ ly nhựa

- Giả thể: chỉ xo dừa. Trước khi sử dụng phải ngâm nước với 1 ngày đêm, sau đó rửa sạch bằng nước, phơi khô và cắt trừ.
- Hạt giống: mua các loại hạt giống cải thia, cải ngọt, cải bẹ xanh, rau đen dò, mồng to, xà lách, rau muống, dưa leo, húng quế.
4.4.2. Ươm cây con
- Ngâm hạt giống 1-2 giờ trong nước âm (khoảng 40³C), ú trong vài màn qua một đêm, sau đó đem gieo trên nền pha loãng Cocobi.
- Tưới nước thường xuyên cho đến khi cây con có được hai lá thật (khoảng 5-7 ngày).

4.4.3. Pha chế dung dịch dinh dưỡng gốc
Pha các dung dịch gốc có thể số pha loãng 100.

4.4.3.1. Pha dung dịch trong rau ăn lá theo công thức rau ăn lá chung của Howard Resh

- Công thức rau ăn lá chung của Howard Resh:

Bảng 4.1. Công thức rau ăn lá của Howard Resh

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Nồng độ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (NO₃⁻)</td>
<td>165</td>
</tr>
<tr>
<td>N (NH₄⁺)</td>
<td>15</td>
</tr>
<tr>
<td>P</td>
<td>50</td>
</tr>
<tr>
<td>K</td>
<td>210</td>
</tr>
<tr>
<td>Mg</td>
<td>45</td>
</tr>
<tr>
<td>Ca</td>
<td>190</td>
</tr>
<tr>
<td>S</td>
<td>65</td>
</tr>
<tr>
<td>Fe</td>
<td>4</td>
</tr>
<tr>
<td>Zn</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>0,5</td>
</tr>
<tr>
<td>Mn</td>
<td>0,5</td>
</tr>
<tr>
<td>STT</td>
<td>Tên hóa chất</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Potassium Nitrate</td>
</tr>
<tr>
<td>2</td>
<td>Magnesium Sulfate (Heptahydrate)</td>
</tr>
<tr>
<td>3</td>
<td>Zinc Sulfate (Dihydrate)</td>
</tr>
<tr>
<td>4</td>
<td>Manganese Sulfate (Monohydrate)</td>
</tr>
<tr>
<td>5</td>
<td>Iron EDTA</td>
</tr>
<tr>
<td>6</td>
<td>Copper Sulfate (pentahydrate)</td>
</tr>
<tr>
<td>7</td>
<td>Boric Acid</td>
</tr>
<tr>
<td>8</td>
<td>Calcium Nitrate (Tetrahydrate)</td>
</tr>
<tr>
<td>9</td>
<td>Ammonium Orthomolybdate</td>
</tr>
<tr>
<td>10</td>
<td>Potassium Monobasic Phosphate</td>
</tr>
<tr>
<td>11</td>
<td>Ammonium Sulfate</td>
</tr>
</tbody>
</table>

- 3,077g phức Fe(EDTA) được thay thế bằng 3,077g Na[FeEDTA].
- Tính toàn lượng Fe₂(SO₄)₃ và Na₂EDTA.2H₂O cần sử dụng để điều chế 3,077g Na[FeEDTA]:

\[
2C_{10}H_{14}N_{2}Na_{2}O_{8}·2H₂O + Fe₂(SO₄)₃ \rightarrow 2Fe(C_{10}H_{12}N₂NaO₈) + Na₂SO₄ + 2H₂SO₄ + 4H₂O
\]

\[
2.372 \text{ g} \quad 400 \text{ g} \quad 2.367 \text{ g}
\]
3,119 g ← 1,677 g ← 3,077 g

- Dung dịch gốc A:
 - Dung dịch A gồm các chất: Na[FeEDTA] 3,077g; Ca(NO_3)_2.4H_2O 107,347g; KNO_3 35,288g.
 - Pha chế phục Na[FeEDTA]: hòa tan 3,119 g Na_2EDTA.2H_2O và 1,677 g Fe_2(SO_4)_3 vào 2 cốc thủy tinh khác nhau sau đó trộn chung dung dịch ở 2 cốc, khuấy đều cho đến khi dung dịch trong và có màu vàng sẫm, sau đó cho vào bình định mức.
 - Lần lượt hòa tan từng muối còn lại bằng nước cất (40-50 ⁰C) trong cốc thủy tinh và cho vào bình định mức.
 - Dùng nước cất định mức đun vạch, sau đó cho vào bình chứa bằng nhựa.

- Dung dịch gốc B:
 - Dung dịch B gồm các chất: MgSO_4.7H_2O 45,639g; MnSO_4.H_2O 0,154g; H_3BO_3 0,286; CuSO_4.5H_2O 0,039g; ZnSO_4.2H_2O 0,03; KH_2PO_4 24,198g; (NH_4)_2MoO_4 0,01; (NH_4)_2SO_4 7,086g.
 - Lần lượt hòa tan từng muối bằng nước cất (40-50 ⁰C) trong cốc thủy tinh và cho vào bình định mức.
 - Dùng nước cất định mức đun vạch, sau đó cho vào bình chứa bằng nhựa.

4.4.3.2. Pha dung dịch trồng rau ăn lá theo công thức rau ăn lá nhiệt đới của Douglas Peckenpaugh

- Công thức rau ăn lá của Douglas Peckenpaugh:

<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Nồng độ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (NO_3⁻)</td>
<td>190</td>
</tr>
<tr>
<td>P</td>
<td>25</td>
</tr>
<tr>
<td>K</td>
<td>98</td>
</tr>
<tr>
<td>Mg</td>
<td>25</td>
</tr>
</tbody>
</table>

Bảng 4.3. Công thức rau ăn lá nhiệt đới của Douglas Peckenpaugh
<table>
<thead>
<tr>
<th>STT</th>
<th>Tên hóa chất</th>
<th>CTPT</th>
<th>Nhóm</th>
<th>Khối lượng (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Potassium Nitrate</td>
<td>KNO₃</td>
<td>A</td>
<td>19,191</td>
</tr>
<tr>
<td>2</td>
<td>Magnesium Sulfate (Heptahydrate)</td>
<td>MgSO₄.7H₂O</td>
<td>B</td>
<td>25,355</td>
</tr>
<tr>
<td>3</td>
<td>Zinc Sulfate (Dihydrate)</td>
<td>ZnSO₄.2H₂O</td>
<td>B</td>
<td>0,076</td>
</tr>
<tr>
<td>4</td>
<td>Manganese Sulfate (Monohydrate)</td>
<td>MnSO₄.H₂O</td>
<td>B</td>
<td>0,606</td>
</tr>
<tr>
<td>5</td>
<td>Iron EDTA</td>
<td>Fe(EDTA)</td>
<td>A</td>
<td>3,769</td>
</tr>
<tr>
<td>6</td>
<td>Copper Sulfate (pentahydrate)</td>
<td>CuSO₄.5H₂O</td>
<td>B</td>
<td>0,028</td>
</tr>
<tr>
<td>7</td>
<td>Boric Acid</td>
<td>H₃BO₃</td>
<td>B</td>
<td>0,4</td>
</tr>
<tr>
<td>8</td>
<td>Calcium Nitrate (Tetrahydrate)</td>
<td>Ca(NO₃)₂.4H₂O</td>
<td>A</td>
<td>130,728</td>
</tr>
<tr>
<td>9</td>
<td>Ammonium Orthomolybdate</td>
<td>(NH₄)₂MoO₄</td>
<td>B</td>
<td>0,01</td>
</tr>
</tbody>
</table>

- Kết quả sau khi tính toán bằng phần mềm Hydrobuddy v1.50

Bảng 4.4. Thành phần hóa chất dùng để pha chế dung dịch dinh dưỡng theo công thức rau ăn là nhiệt độ của Douglas Peckenpaugh.
<table>
<thead>
<tr>
<th>10</th>
<th>Potassium Monobasic Phosphate</th>
<th>KH₂PO₄</th>
<th>B</th>
<th>9,322</th>
</tr>
</thead>
</table>

- 3,769g phức Fe(EDTA) được thay thế bằng 3,769g Na[FeEDTA].
- Tính toàn lượng Fe₂(SO₄)₃ và Na₂EDTA₂H₂O cần sử dụng để điều chế 3,769g Na[FeEDTA]:

\[2C_{10}H_{14}N_{2}Na_{2}O_{8}·2H₂O + Fe_2(SO₄)_3 → 2Fe(C_{10}H_{12}N_{2}NaO₈) + Na₂SO₄ + 2H₂SO₄ + 4H₂O\]

\[
\begin{align*}
2.372 \text{ g} & \quad 400 \text{ g} & 2.367 \text{ g} \\
3.820 \text{ g} & \leftarrow 2.054 \text{ g} & \leftarrow 3.769 \text{ g}
\end{align*}
\]

- Dung dịch gốc A:
 - Dung dịch A gồm các chất: Na[FeEDTA] 3,769g; Ca(NO₃)₂.4H₂O 130,728g; KNO₃ 19,191g.
 -PHA chế phức Fe(EDTA): hòa tan 3,820g Na₂EDTA₂H₂O và 2,054g Fe₂(SO₄)₃ vào 2 cốc thủy tinh khác nhau sau đó trộn chung dung dịch ở 2 cốc, khuấy đều cho đến khi dung dịch chuyển sang trong và có màu vàng sẫm, sau đó cho vào bình định mức.
 - Lần lượt hòa tan các muối còn lại bằng nước âm (40-50⁰C) trong cốc thủy tinh và cho vào bình định mức.
 - Dùng nước cất định mức đến vạch, sau đó cho vào bình chứa bằng nhựa.
- Dung dịch gốc B:
 - Dung dịch B gồm các chất: MgSO₄.7H₂O 25,355g; MnSO₄·H₂O 0,606g; H₃BO₃ 0,4; CuSO₄·5H₂O 0,028g; ZnSO₄·2H₂O 0,076; KH₂PO₄ 9,322g; (NH₄)₂MoO₄ 0,01.
 - Lần lượt hòa tan từng muối bằng nước âm (40-50⁰C) trong cốc thủy tinh và cho vào bình định mức.
 - Dùng nước cất định mức đến vạch, sau đó cho vào bình chứa bằng nhựa.

4.4.3.3. Pha dung dịch trồng dưa leo theo công thức dưa leo của Howard Resh

- Công thức dưa leo của Howard Resh:

Bảng 4.5. Công thức dưa leo của Howard Resh
<table>
<thead>
<tr>
<th>Nguyên tố</th>
<th>Nồng độ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (NO₃⁻)</td>
<td>140</td>
</tr>
<tr>
<td>P</td>
<td>50</td>
</tr>
<tr>
<td>K</td>
<td>350</td>
</tr>
<tr>
<td>Mg</td>
<td>50</td>
</tr>
<tr>
<td>Ca</td>
<td>200</td>
</tr>
<tr>
<td>S</td>
<td>150</td>
</tr>
<tr>
<td>Fe</td>
<td>3</td>
</tr>
<tr>
<td>Zn</td>
<td>0,1</td>
</tr>
<tr>
<td>B</td>
<td>0,3</td>
</tr>
<tr>
<td>Mn</td>
<td>0,8</td>
</tr>
<tr>
<td>Cu</td>
<td>0,07</td>
</tr>
<tr>
<td>Mo</td>
<td>0,03</td>
</tr>
</tbody>
</table>

- Kết quả sau khi tính toán bằng phần mềm Hydrobuddy v1.50

Bảng 4.6. Thành phần hóa chất dùng để pha chế dung dịch dinh dưỡng theo công thức trồng dưa leo của Howard Resh

<table>
<thead>
<tr>
<th>STT</th>
<th>Tên hóa chất</th>
<th>CTPT</th>
<th>Nhóm</th>
<th>Khối lượng (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boric Acid</td>
<td>H₃BO₃</td>
<td>B</td>
<td>0,172</td>
</tr>
<tr>
<td>2</td>
<td>Calcium Nitrate (Tetrahydrate)</td>
<td>Ca(NO₃)₂.4H₂O</td>
<td>A</td>
<td>117,917</td>
</tr>
<tr>
<td>3</td>
<td>Copper Sulfate (pentahydrate)</td>
<td>CuSO₄.5H₂O</td>
<td>B</td>
<td>0,028</td>
</tr>
<tr>
<td>4</td>
<td>Ammonium Orthomolybdate</td>
<td>(NH₄)₂MoO₄</td>
<td>B</td>
<td>0,006</td>
</tr>
<tr>
<td>Số</td>
<td>Chất liệu</td>
<td>Công thức</td>
<td>Công suất</td>
<td>Đường kính</td>
</tr>
<tr>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
<td>Iron EDTA</td>
<td>Fe(EDTA)</td>
<td>A</td>
<td>2,308</td>
</tr>
<tr>
<td>6</td>
<td>Magnesium Sulfate (Heptahydrate)</td>
<td>MgSO₄.7H₂O</td>
<td>B</td>
<td>50,71</td>
</tr>
<tr>
<td>7</td>
<td>Manganese Sulfate (Monohydrate)</td>
<td>MnSO₄.H₂O</td>
<td>B</td>
<td>0,246</td>
</tr>
<tr>
<td>8</td>
<td>Potassium Monobasic Phosphate</td>
<td>KH₂PO₄</td>
<td>B</td>
<td>21,97</td>
</tr>
<tr>
<td>9</td>
<td>Zinc Sulfate (Dihydrate)</td>
<td>ZnSO₄.2H₂O</td>
<td>B</td>
<td>0,03</td>
</tr>
<tr>
<td>10</td>
<td>Potassium Sulfate</td>
<td>K₂SO₄</td>
<td>B</td>
<td>63,93</td>
</tr>
</tbody>
</table>

- Để tránh nồng độ muối tan trong dung dịch gốc B quá cao gây ảnh hưởng đến chất lượng dung dịch định hướng, K₂SO₄ được pha chế riêng thành dung dịch gốc C.
- 2,308g phuc Fe(EDTA) được thay thế bằng 2,308g Na[FeEDTA].
- Tính toàn lượng Fe₂(SO₄)₃ và Na₂EDTA.2H₂O cần sử dụng để điều chế 2,308g Na[FeEDTA]:

\[
2C_{10}H_{14}N_{2}Na_{2}O_{6}.2H_{2}O + Fe_{2}(SO_{4})_{3} \rightarrow 2Fe(C_{10}H_{12}N_{2}NaO_{8}) + Na_{2}SO_{4} + 2H_{2}SO_{4} + 4H_{2}O
\]

\[
\begin{align*}
2.372 \text{ g} & \quad 400 \text{ g} & \quad 2.367 \text{ g} \\
2.339 \text{ g} & \quad \leftarrow \quad 1.258 \text{ g} & \quad \leftarrow \quad 2.308 \text{ g}
\end{align*}
\]

- Dung dịch gốc A:
- Dung dịch A gồm các chất: Fe(EDTA) 2,308g; Ca(NO₃)₂.4H₂O 117,917g.
- Pha chế phuc Fe(EDTA): hòa tan 2,339g Na₂EDTA.2H₂O và 1,258g Fe₂(SO₄)₃ vào 2 cốc thủy tinh khác nhau sau đó trộn chung dung dịch ở 2 cốc, khuấy đều cho đến khi dung dịch chuyển sang trong và có màu vàng sậm, sau đó cho vào bình định mức.
- Hòa tan muối muối Ca(NO₃)₂.4H₂O bằng nước âm (40-50°C) trong cốc thủy tinh và cho vào bình định mức.
- Dùng nước cất định mức đến vách, sau đó cho vào bình chứa bằng nhựa.

- Dung dịch gốc B:
- Dung dịch B gồm các chất: MgSO₄·7H₂O 50,71g; MnSO₄·H₂O 0,246g; H₃BO₃ 0,172; CuSO₄·5H₂O 0,028g; ZnSO₄·2H₂O 0,03; KH₂PO₄ 21,97g; (NH₄)₂MoO₄ 0,006.
- Lần lượt hòa tan từng muối bằng nước ấm (40-50 °C) trong cốc thủy tinh và cho vào bình định mức.
- Dung nước cất định mức đến vạch, sau đó cho vào bình chứa bằng nhựa.
 - Dung dịch gốc C: chứa 63,93g K₂SO₄
 - Cho muối K₂SO₄ vào cốc thủy tinh hòa tan hoàn toàn bằng nước ấm (40-50 °C), sau đó cho vào bình định mức rồi định mức đến vạch bằng nước cất.

Lưu ý: Bảo quản các dung dịch dinh dưỡng ở nơi thoáng mát, ít ánh sáng.

4.4.3.4. Làm video clip hướng dẫn pha chế dung dịch dinh dưỡng

Hướng dẫn pha chế dd dinh dưỡng qua video clip pha chế dd dinh dưỡng trong rau ăn lá theo công thức Howard Resh.
- Bước 1: Lên kich bàn
- Bước 2: Chuẩn bị dụng cụ, hóa chất.
- Bước 3: Thực hiện các thao tác pha chế dd theo kich bàn. Đồng thời, sử dụng máy chụp hình KTS Sony quay lại toàn bộ quá trình pha chế dd dinh dưỡng.
- Bước 4: Sử dụng phần mềm Ulead VideoStudio 11 xử lí phim:
 + Chỉnh sửa các video clip đã quay
 + Lồng tiếng, thêm hiệu ứng, cài nhạc nền…
 + Xuất ra video clip hoàn chỉnh

4.4.4. Tiến hành trồng thủy canh

4.4.4.1. Pha dung dịch dinh dưỡng từ dung dịch gốc và cho cây con vào dung dịch.
- Thể tích dung dịch dinh dưỡng pha chế phải đảm bảo đủ để 1/3 chiều cao của ly nhựa chứa cây trồng ngập trong nước.
- Pha chế 10 lít dung dịch dinh dưỡng trồng thủy canh rau ăn lá: cho vào thốngADOW khoảng 9,8 lít nước, sau đó lần lượt thêm vào 100 ml dung dịch gốc A và 100 ml dung dịch gốc B (khuyen để sau mỗi lần thêm dung dịch).
- Pha chế 10 lít dung dịch dinh dưỡng trong thủy canh dưa leo: cho vào thùng xốp khoảng 9,7 lít nước, sau đó lần lượt thêm vào 100 ml dung dịch gốc A, 100 ml dung dịch gốc B và 100 ml dung dịch gốc C (khử đầy sau mỗi lần thêm dung dịch).
- Tách cây con ra khỏi giá thể nến hữu cơ, cho vào ly nhựa cùng với giá thể chi xơ dừa. Sau đó, cho ly nhựa vào các lỗ trên nắp thùng xốp chưa dung dịch dinh dưỡng đã pha sẵn.

4.4.4.2. Chăm sóc cây trồng.
- Pha và phun xịt thêm dung dịch dinh dưỡng cho cây con trong khoảng 3-2 ngày đầu.
- Sử oxy 1 giờ/1 lần/3 ngày.
- Theo dõi thường xuyên mức nước trong thùng xốp, bỏ sung thêm dung dịch dinh dưỡng khi mức dung dịch thấp hơn bộ rễ.
- Đưa vào biểu hiện của cây trồng kết hợp với các thiết bị đo TDS, giấy đo pH để điều chỉnh dung dịch dinh dưỡng cho phù hợp.

4.4.4.3. Thu hoạch
- Khoảng 2-3 ngày trước khi thu hoạch chỉ bỏ sung nước vào thùng xốp để tránh dư lượng hóa chất trong sản phẩm.
- Đối với các loại rau đông, rau muông và húng quế sau khi thu hoạch có thể chăm thêm dung dịch để tiếp tục thu hoạch lần sau. Các loại rau ăn lá còn lại chỉ thu hoạch được 1 lần.
- Vệ sinh thùng xốp, ly nhựa để sử dụng lại. Giấy thể xơ dừa được tách ra khỏi rễ cây và xử lý lại bằng nước vô.
- Ghi nhận các kết quả thu được:
 + Thời gian qua các giai đoạn sinh trưởng: Thời gian từ khi gieo hạt đến khi có đủ 2 lá thật (chuan bị cho vào dung dịch), Thời gian từ khi cho vào dung dịch dinh dưỡng đến khi thu hoạch.
 + Số lá/cây: Đếm 8 ngày 1 lần số lá trên mỗi cây. Số lá/cây được tính bằng số liệu trung bình của các cây theo dõi.
+ Chiều cao cây (cm): Đo 8 ngày 1 lần, dùng thước nhựa 50cm đo từ gốc (sát mặt già thể) đến vót lá cao nhất. Chiều cao cây được tính bằng số liệu trung bình của các cây theo dõi.
+ Khối lượng sản phẩm (gam): Cân sản phẩm rau quâ thu hoạch được từ mỗi thùng, tính khối lượng trung bình thu được từ mỗi thùng.

- Kiểm nghiệm một số chỉ tiêu của các mẫu rau quâ để đảm bảo sản phẩm an toàn.

4.4.4.4. Làm video clip hướng dẫn trồng rau bằng phương pháp thủy canh tĩnh

Hướng dẫn thao tác trồng rau ăn lá bằng phương pháp thủy canh tĩnh qua video clip trồng rau cải thia bằng dung dịch dinh dưỡng pha chế theo công thức rau ăn lá của Howard Resh.

- Bước 1: Lên kịch bản
- Bước 2: Chuẩn bị bộ dụng cụ và nguyên liệu
- Bước 3: Tiến hành các thao tác thủy canh cải thia bằng phương pháp thủy canh tĩnh từ lúc gieo hạt cho đến khi thu hoạch theo kịch bản. Đồng thời, sử dụng máy chụp hình KTS Sony quay lại toàn bộ quá trình thực hiện.
- Bước 4: Sử dụng phần mềm Ulead VideoStudio 11:
 + Chỉnh sửa các video clip đã quay
 + Lồng tiếng, thêm hiệu ứng, cài nhạc nền...
 + Xuất ra video clip hoàn chỉnh

4.4.5. Phân tích kết quả thực nghiệm

- Sử dụng các phương pháp thống kê toán học để xử lý số liệu thực nghiệm kết hợp so sánh, đối chiếu, phân tích để rút ra hiệu quả của các công thức pha chế dùng dịch thủy canh trên từng loại cây trồng cụ thể.
CHƯƠNG 5. KẾT QUẢ VÀ THẢO LUẬN

5.1. Thực nghiệm phương pháp thủy canh tính sử dụng dung dịch dinh dưỡng được pha chế theo công thức rau ăn lá của Howard Resh và Douglas Peckenpaugh

- Xà lách:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 7 ngày.
 - Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.
 - Qua kết quả thí nghiệm ở bảng 5.1 cho thấy tốc độ sinh trưởng của xà lách được trồng theo 2 công thức tương nhau, cây xà lách phát triển đồng đều.

Bảng 5.1. Số lá trung bình và năng suất của xà lách được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>4,2</td>
<td>4,7</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>8,5</td>
<td>9,0</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>10,1</td>
<td>10,5</td>
</tr>
<tr>
<td>Năng suất</td>
<td>400 g/thùng</td>
<td>420 g/thùng</td>
</tr>
</tbody>
</table>

- Cải thìa:

Bảng 5.2. Số lá trung bình và năng suất của cải thìa được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>5,0</td>
<td>5,6</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>7,9</td>
<td>8,5</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>10,2</td>
<td>10,7</td>
</tr>
<tr>
<td>Năng suất</td>
<td>750 g/thùng</td>
<td>800 g/thùng</td>
</tr>
</tbody>
</table>

- Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 5 ngày.
- Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.
- Kết quả nghiên cứu ở bảng 5.2 cho thấy tốc độ sinh trưởng của rau cải thìa được trồng theo 2 công thức tương nhau, cây phát triển tốt, cho năng suất cao.
• Cải ngọt:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 5 ngày.
 - Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.
 - Số liệu từ bảng 5.3 cho thấy cây cải ngọt trồng theo 2 công thức có tốc độ phát triển tương đường, năng suất ổn định.

Bảng 5.3. Số lá trung bình và năng suất của cải ngọt được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức DP</th>
<th>Công thức HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>7,3</td>
<td>7,5</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>9,2</td>
<td>9,6</td>
</tr>
<tr>
<td>Năng suất</td>
<td>730 g/thùng</td>
<td>750 g/thùng</td>
</tr>
</tbody>
</table>

• Cải bẹ xanh:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 5 ngày.
 - Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.
 - Qua kết quả thực nghiệm ở bảng 5.4 có thể thấy cải xanh trồng theo 2 công thức có mức độ phát triển tương đương nhau, năng suất tốt.

Bảng 5.4. Số lá trung bình và năng suất của cải xanh được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>5,2</td>
<td>5,3</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>6,9</td>
<td>8,0</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>8,5</td>
<td>8,7</td>
</tr>
<tr>
<td>Năng suất</td>
<td>870 g/thùng</td>
<td>900 g/thùng</td>
</tr>
</tbody>
</table>

• Rau muống hạt:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 5 ngày.
 - Thu hoạch 3 lần: sau 12 ngày, sau 19 ngày và sau 26 ngày (kể từ ngày cho vào dung dịch).
Kết quả thực nghiệm từ bảng 5.5 và hình 5.1 cho thấy rau muống được trồng theo công thức rau ăn lá của Douglas Peckenpaugh phát triển tốt hơn và cho năng suất cao hơn so với công thức còn lại. Điều này có lẽ là do nồng độ N (yếu tố ảnh hưởng quan trọng đến năng suất và chất lượng của cây rau muống) trong công thức Douglas Peckenpaugh cao hơn trong công thức Howard Resh.

Bảng 5.5. Chiều cao trung bình (cm) và năng suất của rau muống được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>22,4</td>
<td>23,5</td>
</tr>
<tr>
<td>Sau 12 ngày</td>
<td>28,5</td>
<td>30,2</td>
</tr>
<tr>
<td>Sau 19 ngày</td>
<td>33,1</td>
<td>32,5</td>
</tr>
<tr>
<td>Sau 26 ngày</td>
<td>34,8</td>
<td>35,9</td>
</tr>
<tr>
<td>Năng suất</td>
<td>900 g/thùng</td>
<td>1230 g/thùng</td>
</tr>
</tbody>
</table>

Hình 5.1. Rau muống trồng theo ct HR (bên trái) và rau muống trồng theo ct DP (bên phải) sau 12 ngày.
- Rau dền:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 7 ngày.
 - Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.
 - Theo kết quả thực nghiệm ở bảng 5.6 cho thấy rau dền trồng theo 2 công thức có khả năng phát triển tương đương nhau, cây đều phát triển chậm và cho năng suất thấp.

Bảng 5.6. Chiều cao trung bình (cm) và năng suất của rau dền được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>7,5</td>
<td>7,2</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>16,3</td>
<td>16,5</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>21,0</td>
<td>21,5</td>
</tr>
<tr>
<td>Năng suất</td>
<td>310 g/thùng</td>
<td>320 g/thùng</td>
</tr>
</tbody>
</table>

- Húng quế:
 - Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 7 ngày.
 - Thời gian từ khi cho vào dung dịch đến thu hoạch: 26 ngày.

Bảng 5.7. Chiều cao trung bình (cm) và năng suất của húng quế được trồng theo 2 công thức

<table>
<thead>
<tr>
<th>Thời gian (từ ngày cho vào dd)</th>
<th>Công thức HR</th>
<th>Công thức DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sau 8 ngày</td>
<td>9,3</td>
<td>11,1</td>
</tr>
<tr>
<td>Sau 16 ngày</td>
<td>23,5</td>
<td>24,9</td>
</tr>
<tr>
<td>Sau 24 ngày</td>
<td>30,7</td>
<td>34,4</td>
</tr>
<tr>
<td>Năng suất</td>
<td>350 g/thùng</td>
<td>560 g/thùng</td>
</tr>
</tbody>
</table>

- Số liệu từ bảng 4.13 và hình 4.3 cho ta thấy rau húng quế được trồng bằng công thức công thức rau ăn lá của Douglas Peckenpaugh phát triển tốt hơn và cho năng suất cao hơn so với công thức rau ăn lá của Howard Resh.
Hình 5.2. Rau húng quế trồng theo ct HR (bên trái) và rau húng quế trồng theo ct DP (bên phải) sau 26 ngày.

- Mồng tơi
- Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 12 ngày.
- Sau khi cho vào dung dịch lá mồng tơi chuyển sang màu vàng, rễ kém phát triển, cây sinh trưởng rất chậm: sau 1 tuần cho vào dung dịch hình thành 3 lá thật. Điều đó cho thấy cây mồng tơi không phù hợp với phương pháp thủy canh tính sử dụng 2 dung dịch dinh dưỡng đã pha chế.

Hình 5.3. Rau mồng tơi trồng theo ct HR (bên trái) và mồng tơi trồng theo ct DP (bên phải) sau 7 ngày.
Qua kết quả nghiên cứu cho thấy 2 dung dịch dịch dưỡng được pha chế theo công thức của Howard Resh và Douglas Peckenpaugh thích hợp để trồng các giống rau cài (cải ngọt, cải thia, cải xanh) và rau xà lách. Riêng cùng loại rau củ của Douglas Peckenpaugh đem lại hiệu quả tốt hơn để trồng rau húng quế và rau muống hạt.

5.2. Thực nghiệm phương pháp thủy canh tính sự dùng dung dịch dinh dưỡng được pha chế theo công thức Dưa leo của Howard Resh (công thức 3)

Hình 5.4. Biểu hiện thiếu kali của dưa leo trong theo công thức ban đầu

Hình 5.5. Dưa leo phát triển tốt sau khi điều chỉnh công thức

- Thời gian từ khi gieo hạt đến khi cho vào dung dịch: 7 ngày.
- Ti lệ sống 100%, bố rễ phát triển rất mạnh. Thời gian đầu cây sinh trưởng phát triển tốt. Tuy nhiên, khi đến giai đoạn phát triển trái xuất hiện một số biểu hiện xấu: lá bị vắng ở mép sau đó phân thit lá cùng bị ngả vắng, trái bị cong không suôn đều. Cây sinh trưởng chậm lại, các trái non mới hình thành không phát triển. Theo TS. Võ Thị Bạch Mai [6]: đây là những biểu hiện của triệu chứng thiếu Kali (hình 5.4).

- Để khắc phục tình trạng trên, tác giả đã tăng nồng độ Kali trong công thức lên 400 ppm. Khi đó, dung dịch gốc C được pha chế lại với 75,073 g muối kali sunfat, dung dịch gốc A và B vẫn giữ nguyên như cũ.

- Với sự điều chỉnh trên, trong đót gieo trồng sau hiện tượng vàng lá đã giảm xuống đáng kể, trái thẳng, suôn đều (hình 5.5). Thu hoạch lứa đầu tiên sau 28 ngày cho vào dung dịch. Sản lượng thu hoạch: trong 3 tuần đầu tiên của vụ thu hoạch đã thu được 21 trái/thùng (4 cây/thùng) với tổng khối lượng 3,2 kg, mỗi trái có khối lượng trung bình khoảng 152 g.

5.3. Kiểm định chất lượng mẫu rau trong thực nghiệm:

Tác giả đã tiến hành kiểm định 2 mẫu rau quả trong thực nghiệm

- Mẫu 1: Rau cải thìa được trồng theo công thức rau ăn lá của Douglas Peckenpaugh.
- Mẫu 2: Dưa leo được trồng theo công thức dưa leo Howard Resh.

Bảng 5.8. Hàm lượng nitrat (NO₃⁻) và một số chỉ số kim loại trong rau cải thìa.

<table>
<thead>
<tr>
<th>Chỉ tiêu</th>
<th>NO₃⁻ (mg/kg tươi)</th>
<th>Cu (mg/kg tươi)</th>
<th>Zn (mg/kg tươi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trong mẫu</td>
<td>Giới hạn cho phép (TCVN)</td>
<td>Trong mẫu</td>
<td>Giới hạn cho phép (TCVN)</td>
</tr>
<tr>
<td>771,33</td>
<td>1500</td>
<td><1,0</td>
<td>30</td>
</tr>
</tbody>
</table>

Kết quả phân tích ở bảng 5.8 cho thấy:
- Dư lượng Nitrat (NO₃⁻) trong mẫu rau cải thia nằm ở dưới ngưỡng cho phép khá xa.
- Hàm lượng Cu và Zn trong mẫu cải thia đều rất thấp so với ngưỡng cho phép.

Bảng 5.9. Hàm lượng nitrat, một số kim loại và lượng vi sinh vật gây hại trong mẫu dưa leo.

<table>
<thead>
<tr>
<th>CHỈ TIỀU</th>
<th>NO₃⁻ (mg/kg tươi)</th>
<th>Trong màu</th>
<th><5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giới hạn cho phép (TCVN)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu (mg/kg tươi)</td>
<td>Trong màu</td>
<td><0,4</td>
</tr>
<tr>
<td></td>
<td>Giới hạn cho phép (TCVN)</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zn (mg/kg tươi)</td>
<td>Trong màu</td>
<td><0,39</td>
</tr>
<tr>
<td></td>
<td>Giới hạn cho phép (TCVN)</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Vi sinh vật</td>
<td>Escherichia coli</td>
<td>Trong màu</td>
<td><3 MPN/g</td>
</tr>
<tr>
<td></td>
<td>Giới hạn cho phép (TCVN)</td>
<td>10 CFU/g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmonella spp</td>
<td>Trong màu</td>
<td>Không phát hiện</td>
</tr>
<tr>
<td></td>
<td>Giới hạn cho phép (TCVN)</td>
<td>Không phát hiện</td>
<td></td>
</tr>
</tbody>
</table>

Kết quả phân tích ở bảng 5.9 cho thấy:

- Dư lượng Nitrat (NO₃⁻) trong mẫu dưa leo rất thấp so với ngưỡng cho phép.
- Hàm lượng Cu và Zn trong mẫu dưa leo đều ở dưới và rất xa ngưỡng cho phép.
- Các chỉ tiêu về vi sinh vật gây hại Escherichia coli và Salmonella spp trong mẫu dưa leo đều đảm bảo an toàn.

Như vậy, việc trồng cải thia và dưa leo theo phương pháp thủy canh tình bằng dung dịch pha chế đảm bảo an toàn về sinh thực phẩm.
PHẦN III: KẾT LUẬN – ĐỀ XUẤT

1. Kế luận
Khóa luận đã hoàn thành được những mục đích và nhiệm vụ đề ra sau đây:

1.1. Nghiên cứu cơ sở lý luận để tài

- Nghiên cứu tổng quan và cơ sở lý thuyết của phương pháp thủy canh.
- Nghiên cứu tổng quan về nhu cầu dinh dưỡng của cây trồng.
- Nghiên cứu về nội dung, phương pháp thực hiện mô hình thủy canh tĩnh (thủy canh không hồi lưu).
- Nghiên cứu tổng quan về tính toán dinh dưỡng trong dụng dịch thủy canh.
- Nghiên cứu nội dung quy định về quản lý sản xuất và kinh doanh rau an toàn.
- Nghiên cứu cách sử dụng phần mềm Hydrobuddy 1.50 để pha chế dụng dịch thủy canh.
- Ngoài ra, tác giả đã tìm hiểu một số tài liệu liên quan về Ulead studio 11 và một số phần mềm hỗ trợ khác.

1.2. Nghiên cứu cơ sở thực tiến để tài

- Nghiên cứu thực trạng trồng rau bằng phương pháp thủy canh ở quỹ mỏ hồ gia dinh.

1.3. Hướng dẫn sử dụng phần mềm Hydrobuddy v1.50 pha chế dụng dịch dinh dưỡng

- Giới thiệu và hướng dẫn cách sử dụng phần mềm Hydrobuddy v1.50 với các hình ảnh minh họa cụ thể.

1.4. Thực nghiệm pha chế dụng dịch dinh dưỡng:

- Pha chế thành công 3 loại dụng dịch dinh dưỡng bao gồm: dụng dịch dinh dưỡng trồng rau ăn lá theo công thức của Howard Resh và Douglas Peckenpaugh, dụng dịch dinh dưỡng trồng dưa leo theo công thức của Howard Resh.
- Sử dụng Ulead VideoStudio 11 biên tập một video clip hướng dẫn cách pha chế dụng dịch dinh dưỡng theo công thức rau ăn lá của Howard Resh.

1.5. Thực nghiệm mô hình thủy canh tĩnh
- Dùng dịch dinh dưỡng pha chế theo công thức rau ăn là của Howard Resh và công thức rau ăn là nhiệt đới của Douglas Peckenpaugh phù hợp để trồng các loại rau cải (cải ngọt, cải thia, cải xanh), rau xà lách, rau muống, rau húng quế. Trong đó húng quế và rau muống trồng theo công thức Douglas Peckenpaugh đem lại hiệu quả cao hơn.

- Đưa ra công thức pha chế dung dịch thủy canh phù hợp với cây dưa leo.

- Sử dụng Ulead VideoStudio 11 biên tập một video clip hướng dẫn cách trồng rau cải thia theo phương pháp thủy canh tình.

2. Đề xuất

Qua quá trình nghiên cứu đề tài, tác giả có một số đề xuất để phát triển đề tài:

- Ứng dụng các dung dịch dinh dưỡng đã pha chế trên hệ thống thủy canh hồi lưu.

- Thực nghiệm các dung dịch đã pha chế trên một số loại hoa, cây kiểng.

- Sử dụng phần mềm Hydrobuddy để pha chế dung dịch dinh dưỡng trong thủy canh một số loại rau quả khác, thực nghiệm để nghiên cứu hiệu quả của các dung dịch dinh dưỡng.
TÀI LIỆU THAM KHẢO

Tài liệu tiếng việt:

1. Trịnh Văn Biều (2009), Phương pháp thực hiện để tái nghiên cứu khoa học, ĐHSP.TPHCM.
2. Nguyễn Văn Chung (2012), Nghiên cứu giải pháp công nghệ sản xuất một số loại rau ăn lá trái vụ bằng phương pháp thủy canh.
3. Tạ Thu Cúc (2009), Kỹ thuật trồng rau sạch, NXB Phụ nữ.
4. Lê Văn Đăng, Giáo trình hóa hữu cơ 3, ĐHSP.TPHCM.
5. Lê Văn Hoàng, Ebook Công nghệ nuôi cây mô và tế bào thực vật.
6. Võ Thị Bạch Mai (2003), Thủy canh cây trồng, NXB Đại học quốc gia TP.HCM.

Tài liệu nước ngoài:

12. Keith Roberto (2003), How to hydroponics, Amazon.

Các trang web:

17. http://www.nongnghiep.vn
PHỤ LỤC

Phụ lục 1. Phiếu khảo sát tình hình trồng rau bằng phương pháp thủy canh ở quy mô hộ gia đình... i

Phụ lục 2. Phiếu kiểm nghiệm mẫu rau cải thia được trồng theo công thức rau ăn lá của Douglas Peckenpaugh.. iii

Phụ lục 3. Phiếu kiểm nghiệm mẫu dưa leo được trồng theo công thức dưa leo của Howard Resh .. iv

Phụ lục 4. Mức giới hạn tối đa cho phép của một số vi sinh vật và hóa chất gây hại trong sản phẩm rau tươi... v
Phụ lục 1
Trường Đại học Sư phạm TP.Hồ Chí Minh
Khoa Hóa học

PHIẾU KHẢO SÁT TÌNH HÌNH TRỌNG R AU
BÀNG PHƯƠNG PHÁP THỦY CANH
Ở MỘT SÓ HỘ GIA ĐÌNH

Các anh (chị) thân mến! Chúng tôi là những sinh viên khoa Hóa của trường ĐH SƯ PHẠM TP.HCM. Hiện chúng tôi đang thực hiện khóa luận tốt nghiệp về đề tài: “Pha chế dung dịch dinh dưỡng để trồng rau sạch bằng phương pháp thủy canh tĩnh”. Để nâng cao tính thuyết phục của đề tài, chúng tôi hi vọng sẽ nhận được sự giúp đỡ của các anh (chị) thông qua việc trả lời các câu hỏi khảo sát sau.

Trước khi bắt đầu vui lòng cho biết một số thông tin sau
Anh (chị) hiện đang ở quán: …………………………..Nghề nghiệp:…………………………
..
Câu 1: Hiện tại, mô hình thủy canh anh (chị) đang áp dụng là mô hình nào?
 A. Mô hình thủy canh tĩnh
 B. Mô hình thủy canh hồi lưu
 C. Mô hình khí canh
 D. Phương pháp khác:…………………………

Câu 2: Các loại rau quả anh (chị) đã và đang trồng bằng phương pháp này?
..
..
..

Câu 3 : Anh (chị) chuẩn bị dùng dịch dinh dưỡng như thế nào?
 A. Mua dung dịch có sẵn rồi pha theo hướng dẫn
 B. Mua hóa chất về tự pha chế

Nếu chọn A anh (chị) vui lòng trả lời tiếp các câu 4, 5, 6, 7, 9
Nếu chọn B anh (chị) vui lòng trả lời tiếp câu 8, 9
Câu 4: Anh (chị) cho biết thường mua hóa chất ở đâu?

..

Câu 5: Anh (chị) tính khối lượng hóa chất để pha chế dung dịch dinh dưỡng bằng cách nào?

A. Tự tính từ nồng độ ppm của các công thức thủy canh đã có sẵn
C. Sử dụng các công thức thủy canh đã có khối lượng hóa chất cụ thể
D. Khác

Câu 6: Vui lòng cho biết tên chương trình mà anh (chị) sử dụng để tính khối lượng hóa chất pha chế?

..

Câu 7: Anh (chị) thường gặp khó khăn gì (nếu có) trong việc pha chế dung dịch dinh dưỡng?

..

..

..

Câu 8: Anh (chị) có muốn tự mình tính toán và pha chế dung dịch dinh dưỡng nếu có được sự hướng dẫn cụ thể hay không?

A. Không.
B. Có.
C. Ý kiến khác.

Câu 9: Ý kiến của anh (chị) về hiệu quả của việc trồng rau bằng phương pháp thủy canh?

..

..

..

Xin cảm ơn sự giúp đỡ của anh (chị)!

Mọi thắc mắc, đóng góp ý kiến vui lòng liên hệ địa chỉ email sau

Thuyphamhcmup@gmail.com
Phụ lục 2

PHIÊU KẾT QUẢ XÉT NGHIỆM

Mã số mẫu: 00682.13

<table>
<thead>
<tr>
<th>Sđt</th>
<th>Chí tiêu</th>
<th>Phương pháp</th>
<th>Kết quả</th>
<th>Ngày xét nghiệm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Häm lường Đồng (Cu)</td>
<td>HD.PP.34/TT.AAS-Ref.AOAC 999.11 - 2010 (*)</td>
<td>< 1,0 mg/kg</td>
<td>09/01/2013</td>
</tr>
<tr>
<td>2</td>
<td>Häm lường Mangan (Mn)</td>
<td>HD.PP.36/TT.AAS-Ref.AOAC 985.35 - 2010</td>
<td>5,523 mg/kg</td>
<td>09/01/2013</td>
</tr>
<tr>
<td>3</td>
<td>Häm lường Kẽm (Zn)</td>
<td>HD.PP.06/TT.AAS-Ref.AOAC 969.32 - 2010 (*)</td>
<td>2,96 mg/kg</td>
<td>09/01/2013</td>
</tr>
<tr>
<td>4</td>
<td>Häm lường Nitrat</td>
<td>Ref. IC-Pak column and guard column (Waters); BSEN 12014-4:2005</td>
<td>771,33 mg/kg</td>
<td>10/01/2013</td>
</tr>
</tbody>
</table>

(*) Phép thử này đã được công nhận phù hợp theo tiêu chuẩn ISO/IEC 17025:2005

Ghi chú: - Kết quả này chỉ có giá trị trên mẫu xét nghiệm.

P. GIÁM ĐỐC TRUNG TÂM KIỂM NGHIỆM ATVSTP KHU VỰC PHÍA NAM

TP. HỒ CHÍ MINH, NGÀY 17 THÁNG 01 NĂM 2015

VY VIỆN TRƯỞNG

Nguyễn Đức Thành

Y PHÓ VIỆN TRƯỞNG

Francis Vi Trọng Hiện

D/C: 159 Hưng phú, Phương 8, Quận 8, TP.Hồ Chí Minh

BM.5.10.3
Phụ lục 3

BỘ Y TẾ
VIỆN VỆ SINH - Y TẾ CỘNG CỘNG
THÀNH PHỐ HỒ CHÍ MINH
Số: 010990/NVS

PHIẾU KẾT QUẢ XÉT NGHIỆM
Mã số mẫu: 20263.12

Tên khách hàng: PHẠM THỊ THÚY - TRƯỞNG ĐỀ SƯ PHẠM ĐƯỜNG hü CHI MINH
Địa chỉ: 92/17 HUYỆNH MÂN ĐẤT, P.2, Q.5, TP.HCM
Tên mẫu: DƯA LEO
Ngày lấy mẫu: 14/11/2012
Luồng mẫu: 01 gói x 930g
Ngày nhận mẫu: 14/11/2012

KẾT QUẢ XÉT NGHIỆM

<table>
<thead>
<tr>
<th>Stt</th>
<th>Chì tiêu</th>
<th>Phương pháp</th>
<th>Kết quả</th>
<th>Ngày xét nghiệm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Häm lượng Đồng (Cu)</td>
<td>HD-SP.34/TT.AAS-Ref.AOAC 999.11 - 2010 (***)</td>
<td>Không phát hiện MLOD = 0,4 mg/kg</td>
<td>16/11/2012</td>
</tr>
<tr>
<td>2</td>
<td>Häm lượng Manganese (Mn)</td>
<td>HD-SP.36/TT.AAS-Ref. AOAC 985.35 - 2010</td>
<td>0,215 mg/kg</td>
<td>16/11/2012</td>
</tr>
<tr>
<td>3</td>
<td>Häm lượng Kẽm (Zn)</td>
<td>HD-SP.34/TT.AAS-Ref. AOAC 999.11 - 2010 (***)</td>
<td>Không phát hiện MLOD = 0,39 mg/kg</td>
<td>16/11/2012</td>
</tr>
<tr>
<td>4</td>
<td>Häm lượng Nitrat</td>
<td>Ref. IC-Pak column and guard column (Waters); BSEN 12014-2:2005</td>
<td>Không phát hiện MLOD = 5 mg/kg</td>
<td>20/11/2012</td>
</tr>
<tr>
<td>5</td>
<td>Escherichia coli</td>
<td>AOAC 966.24 - 2005 (Rev. 2010) (***)</td>
<td><3 MPN/g</td>
<td>15/11/2012</td>
</tr>
<tr>
<td>6</td>
<td>Salmonella spp.</td>
<td>TCVN 4829 - 2005 (***)</td>
<td>Không phát hiện /25g</td>
<td>15/11/2012</td>
</tr>
</tbody>
</table>

Ghi chú: - Kết quả này chỉ có giá trị trên mẫu xét nghiệm.

GIÁM ĐỐC TRUNG TÂM KIỂM NGHIỆM ATVSTP KHI VỤ Y CỘNG PHÁI NAM

Lê Chí Nông Hạnh

PREMIER TRUYỀN VỆ SINH - Y TẾ CỘNG CỘNG
TP.Hồ Chí Minh

B обязательно, 159 Hùng Đình, Phường 8, Quận 8, Tp.Hồ Chí Minh
DT: (84-8) 39541971 - Fax: (84-8) 38563164 - Email: xetnghiem-vienvet@lph.org.vn

iv
Phụ lục 4

Mức giới hạn tối đa cho phép của một số vi sinh vật
và hoá chất gây hại trong sản phẩm rau tươi

<table>
<thead>
<tr>
<th>STT</th>
<th>Chỉ tiêu</th>
<th>Mức giới hạn tối đa cho phép</th>
<th>Phương pháp thử</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Hàm lượng nitrat (NO$_3$)</td>
<td>mg/ kg</td>
<td>TCVN 5247:1990</td>
</tr>
<tr>
<td>1</td>
<td>Xà lách</td>
<td>1.500</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Rau gia vị</td>
<td>600</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Bắp cải, Su hào, Suplo, Củ cải, tỏi</td>
<td>500</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Hành lá, Bầu bí, Ót cây, Cà tím</td>
<td>400</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Ngò rau</td>
<td>300</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Khoai tây, Cà rốt</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Đậu ăn quả, Măng tây, Ót ngót</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Cà chua, Dưa chuột</td>
<td>150</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Dưa bể</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>Hành tây</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Dưa hấu</td>
<td>60</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>Hàm lượng kim loại nặng và độc tố</td>
<td>mg/ kg</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Asen (As)</td>
<td>1,0</td>
<td>TCVN 7601:2007; TCVN 5367:1991</td>
</tr>
<tr>
<td>2</td>
<td>Chi (Pb)</td>
<td>1,0</td>
<td>TCVN 7602:2007</td>
</tr>
<tr>
<td>3</td>
<td>Thuy Ngân (Hg)</td>
<td>0,3</td>
<td>TCVN 7604:2007</td>
</tr>
<tr>
<td>4</td>
<td>Đồng (Cu)</td>
<td>30</td>
<td>TCVN 5368:1991;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCVN 6541:1999</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cadimi (Cd)</td>
<td>TCVN 7603:2007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rau ăn cú</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Xà lách</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rau ăn lá</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rau khác</td>
<td>0,02</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Kẽm (Zn)</td>
<td>TCVN 5487:1991</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Thiếc (Sn)</td>
<td>TCVN 5496:2007</td>
<td></td>
</tr>
</tbody>
</table>

III Vi sinh vật hại

<table>
<thead>
<tr>
<th></th>
<th>CFU/ g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Samonella</td>
</tr>
<tr>
<td>2</td>
<td>Coliforms</td>
</tr>
<tr>
<td>3</td>
<td>Escherichia coli</td>
</tr>
</tbody>
</table>

IV Dư lượng thuốc bảo vệ thực vật

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Theo CODEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Những hóa chất có trong CODEX</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Những hóa chất không có trong CODEX</td>
<td>Theo ASEAN hoặc Đài Loan</td>
</tr>
</tbody>
</table>